
Probabilistic Modelling and Reasoning, Tutorial Answer Sheet 1
(for Week 3)

School of Informatics, University of Edinburgh

Instructor: Amos Storkey
Prob sheet ID: 143025.1.1

Please answer all the questions. We expect to get through Q1, Q2, and probably Q3 in the tutorial.

1. Write
P(r, x, y, z) =

1
Z

P(r|x, z)Φ1(x, y)Φ2(y, z)

where P(r = 1|x, z) = 0.5 + 0.2(x− z), Φ1(x, y) = (x + y) and Φ2(y, z) = (y + 1)(z + 1) and all r,x,y,z
are binary {0, 1} variables.

(a) Compute the value of Z as efficiently as you can (consider using a repeated elimination
approach).
The key to this is to eliminate things in the right order. Now Z must normalise the
distribution and so

Z =
∑

r,x,y,z

P(r|x, z)Φ1(x, y)Φ2(y, z).

We can see this is the right thing to do as then
∑

r,x,y,z P(r, x, y, z) = Z/Z = 1.
If we do the sum over r first, this sum is just over the P(r|x, z) term (explain how we can
take the other terms out of the sum), and the sum over this term is equal to 1, regardless
of the values of x and z as this term is a probability distribution over r. So doing that
sum first just leaves

P(x, y, z) =
1
Z

Φ1(x, y)Φ2(y, z)

Now we can sum over z. This involves summing over the Φ2(y, z) term, which results
in Φ∗2(y) =

∑
z Φ2(y, z) = 3(y + 1) = 3y + 3. Now we can sum Φ1(x, y) over x to get

Φ∗1(y) = 1 + 2y, leaving

P(y) =
1
Z

Φ∗1(y)Φ∗2(y) =
1
Z

(1 + 2y)(3y + 3) =
1
Z

6y2 + 9y + 3.

As this is a probability, we must have Z =
∑

y 6y2 + 9y + 3 = 3 + 18 = 21. Again in all
the above it is important to understand how the sums distribute so we can get away with
summing over just the mentioned terms. Note that the order we do the computation in
affects the ease of that computation.

(b) Write down all the conditional independence relationships of the form I(A, B|C) that you
think might hold (remember we can condition on the null set too, to arrive at unconditional
dependence relationships).
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If we don’t condition on r then we have a simple relationship between x, y and z where
y couples the x and the z. If we know y then x and z are independent so I(x, z|y). Condi-
tioning on r results in all the variables being coupled so there are no conditional inde-
pendence relationships if r is conditioned on.
On the other hand, if we know x and z, that is enough to determine r. Any information
from y doesn’t help, so I(r, y|x, z).

(c) Draw a minimal1 undirected and a minimal mixed (directed+unidrected) factor graph for this
distribution.
The undirected graph has three factors, denoted 1, 2, 3 with connections 1 � x, z, r,
2� x, y and 3� y, z. Draw this as a factor graph (factors as square blocks, variables
as circles). To create a mixed graph, convert the edge from z to 1 to an arrow pointing at
the factor 1. Likewise the edge from x to 1. Finally the edge from 1 to r is converted to
an arrow pointing as the variable r. This captures the fact that P(r|x, z) is a conditional
distribution.

(d) Test your proposed conditional independence relationships using the factor graph separation
rule.
For I(x, z|y), then there are two paths from x to z, one via y which is blocked because y
is in the conditioning set, and one via r which is blocked because the factor 1 is ‘head
to head’ along the path, and neither it nor it’s descendant r are in the conditioning
set. So I(x, z|y). If we had done this with the undirected graph, the path via r would
not be blocked. Hence just using the undirected graph loses some of the conditional
independence relationships in the directed graph.
For I(y, r|x, z) consider the undirected graph. There are two paths from r to y, one each
via x and z. both are blocked as both x and z are in the conditioning set. So I(y, r|x, z).
The same applies in the mixed graph case.

2. A multivariate Gaussian distribution can be written as

P(x) =
1

|2πΣ|
1
2

exp
(
−

1
2

(x − µ)TΣ−1(x − µ)
)

where Σ−1 is symmetric.

Draw a minimal factor graph representation for a three dimensional Gaussian distribution. You
may find it useful to write out the vector-matrix-vector computation in summation form.

Write (x − µ)T Σ−1(x − µ) =
∑

i j(xi − µi)(Σ−1)i j(x j − µ j). There is a factor for each i, j pair with
j ≥ i. The symmetry of Σ−1 means that the j < i terms are identical to, and can be combined
with, the equivalent j ≥ i term. If i = j the factor only contains the single variable xi.
Otherwise each factor (i, j) contains the two variables xi, x j. This can be drawn as a bipartite
factor graph where each factor is a pair of nodes. We could include factors that connect to
the singleton nodes, but we could also absorb them into the two-variable factors that already
include that variable: the absorbing does not add any additional links so it loses nothing to
do it. It is worth clearly working through what the factors will look like after this absorbing
process. The final result is a factor graph with three factors: one for each off diagonal term
of the Σ−1 matrix.

1Here we use the term “minimal” in a vague way to just to mean a choice of representation that does not produce factors
that are bigger (i.e. contain more variables) than they need to be.
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3. Consider the following model for images. Each image is split into 8 by 8 pixel regions. Each
region i is given a label xi relating to the type of object that is in that region. Then the 64 pixels
yi j j = 1, 2, . . . , 64 in that region i are determined dependent on the label. The probability of an
object label in each region i is considered to be directly dependent only on the xi in neighbouring
regions, denoted as the set Ni. Illustrate the form of factor graph you may use for such a model.

Draw a factor graph with one factor between each xi and all the yi j for that same i. Then
draw another factor above each xi but also connected to each node in Ni. You can make the
links from each x to corresponding y terms (via the factor) directed.
We can write the distribution out in the form

P(x, y) =
1
Z

∏
i

Pi(yi|xi)Ψi(xi, xNi)

By considering two neighbouring pixels in different regions, and thinking in terms of conditional
independence relationships give a criticism of this form of model.

Suppose y18 and y21 are neighbouring pixels. Then I(y18, y21|x1, x2). This implies knowing
the object being represented in each patch makes these pixels independent. But suppose this
was the same object. Then there is probably some continuity of texture across the patch
boundary and so these are likely to still be dependent, even given we know what object is
being represented (note that in fact we have more generally I(y18, y21|x1)).

4. Again, consider the model

P(r, x, y, z) =
1
Z

P(r|x, z)Φ1(x, y)Φ2(y, z)

where P(r = 1|x, z) = 0.5 + 0.2(x− z), Φ1(x, y) = (x + y) and Φ2(y, z) = (y + 1)(z + 1) and all r,x,y,z
are binary {0, 1} variables.

(a) Use the elimination algorithm to compute P(x|z = 1).

(b) EXTRA: Use the elimination algorithm to compute P(y|r = 0).
Both of these are repetitions of the elimination process we used for computing Z. We
have

P(x, y, z) =
1
Z

Φ1(x, y)Φ2(y, z)

and so we then fix z = 1 to get Φ2(y) = 2(y + 1), so

P(x, y|z) =
1
Z′

Φ1(x, y)Φ2(y).

Note that this conditioning results in a new normalisation constant (the distribution is
now over new variables). Now summing over y gives us

P(x|z) ∝
∑

y

(x + y)[2(y + 1)] = 2x + 4(x + 1) = 6x + 4

To find the constant of proportionality we use Z′ =
∑

x(6x + 4) = 10 + 4 = 14. So
P(x|z) = (6x + 4)/14.

(c) The EXTRA question is for students to work through to convince themselves they are
now confident in handling these sorts of questions. Answers will not be provided: try to
work on the material until you are confident in your answer to this question.
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