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Overview

Undirected graphs

Potential functions, energy functions
Conditional independence

Examples: multivariate Gaussian, MRF
Boltzmann machines, learning rule
Reading: Bishop §8.3, Jordan section 2.2.



Undirected Graphs

@ graph G = (X, E)
@ X is a set of nodes, in

one-to-one

correspondence with a

set of random variables \
@ E is a set of undirected

edges between the

nodes



Graphs and Cliques

@ For directed graphs use P(X) = [[; P(Xi|Pa;), gives notion
of locality

@ For undirected graphs, locality depends on the notion of
cliques

@ A clique of a graph is a fully-connected set of nodes

@ A maximal clique is a clique which cannot be extended to
include additional nodes without losing the property of
being fully connected



Parameterization

@ Joint probability distribution is given as a product of local
functions defined on the maximal cliques of the graph

X) = H 77[}XC xc
CEC

with

Z= Z H ¢XC(XC)

X CeC

@ Each v¥x,(X¢) is a strictly positive, real-valued function,
otherwise arbitrary

@ Zis called the partition function



P(x) = W (x1,x2) P (x1,x3) P (x3,x5) Y (x2,x5,x6) P (x2,x4) /Z



@ Potential functions are in general neither conditional or
marginal probabilities

@ Natural interpretation as agreement, constraint, energy

@ Potential function favours certain local configurations by
assigning them larger values

@ Global configurations that have high probability are,
roughly speaking, those that satisfy as many of the
favoured local configurations as possible



Energy functions

@ Enforce positivity by defining
ch(xC) = exp{_EXc(XC)}
@ Negative sign is conventional (high probability, low energy)

px) = & [T vxo(xe) = 2 exp{~ Y Exy(x0))

cecC cecC

@ Energy E(x) = ZCec Ex,(xc)
@ Boltzmann distribution

px) = & exp{~E(x))



Local Markov Property

@ Denote all nodes by V

@ For a vertex a, let 9a denote the boundary of a, i.e. the set
of vertices in V\athat are neighbours of a

@ Local Markov property: For any vertex a, the conditional
distribution of X; given Xy , depends only on Xy,

P(x) = W (x1,x2) @ (x1,x3) ¥ (x3,x5) Y (x2x5x6) W (x2,x4) /1Z



Global conditional independence

@ Consider arbitrary disjoint index subsets A, Band C

@ If every path from a node in X4 to a node in X¢ includes at
least one node in B then (X4, Xc|XB)

@ This is a naive graph-theoretic separation condition (c.f.
d-separation)

@ Equivalence of conditional independence and clique
factorization form is the Hammersley-Clifford theorem
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Exact Inference in Undirected Graphical Models

@ Triangulate the graph if necessary
@ Use the junction tree algorithm discussed earlier
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Approximate Inference: Gibbs sampler

Loop T times
for each unit i to be sampled from
sample P(Xj|rest)
end for
end loop

@ This is a Markov Chain Monte Carlo (MCMC) method.
Under general conditions this will converge to the correct
distributionas T — oo

@ More general MCMC schemes are possible (e.g.
Metropolis-Hastings)
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Example |I—Multivariate Gaussian

p(x) exp{—%xTZ‘1x}

@ ltis the zeros in ¥~ that define the missing edges in the
graph and hence the conditional independence structure
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@ Discrete random

variables

Ising model in statistical
physics (spins up/down)
MRF models used in
image analysis, e.qg.
segmentation of
regions. Define energies
such that blocks of the
same labels are
preferred (Geman and
Geman, 1984)

Example Il—Markov Random Field
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Example: GrabCut

@ C. Rother, V. Kolmogorov, A. Blake. GrabCut: Interactive
Foreground Extraction using Iterated Graph Cuts.
SIGGRAPH04, 2004

@ Builds Gaussian mixture models of foreground and
background pixels, and uses MRF prior on foreground
label field

Figure acknowledgement: MSR Cambridge GrabCut page
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Boltzmann machines

@ Hinton and Sejnowski (1983)
@ Binary units +1
p(x) = *eXp{ Z WiiXiX; }
@ wj=w;and w; =0
@ set xo = 1 (bias unit)
© 3T WiXiXj = 3 WiXiX]
@ Can have hidden units
@ Potential function is not arbitrary function of cliques, but

only based on pairwise links (can generalize)
® P(X; = 1|rest) = o(2h;) where h; =}, wjx;
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hidden units

output (visible)
units
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Boltzmann machine learning rule

Denote visible units by x, hidden units by y

p(X,y) = 1fexp{E: Oxdr(X,¥)}
K

This is the general form of a log linear model.

@ Features ¢«(X,y) are the pairwise potentials for a
Boltzmann machine

@ Parameters 6y correspond to weights in the Boltzmann
machine
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pOx.Y) = 3 ex[Y fhon(x.y))
k
-1 2 3 (D tutn(xy)
log p(x) = log Z eXp{Z Okdk(X.y)} —logZ

dlog p(x
o qu/xv (ylx) — qu/xv (x,y)

Loy — (G(%, )™
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@ + denotes the clamped phase (with x clamped on visible
units), — denotes the free-running phase (all unclamped)

@ Learning stops when statistics match in both phases

@ Statistics could be computed exactly (using junction tree
algorithm) but often this is intractable—use stochastic
sampling

@ Boltzmann machine learning can be slow due to the need
to use MCMC techniques. Gradient is the difference of two
noisy estimates

@ In Restricted Boltzmann Machines (RBMs), where there is
a layer of visible units and a layer of hidden units with
bipartite connections, learning can be more efficient
(Hinton, 2002)
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