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Overview

Undirected graphs
Potential functions, energy functions
Conditional independence
Examples: multivariate Gaussian, MRF
Boltzmann machines, learning rule
Reading: Bishop §8.3, Jordan section 2.2.
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Undirected Graphs

graph G = (X ,E)

X is a set of nodes, in
one-to-one
correspondence with a
set of random variables
E is a set of undirected
edges between the
nodes
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Graphs and Cliques

For directed graphs use P(X) =
∏

i P(Xi |Pai), gives notion
of locality
For undirected graphs, locality depends on the notion of
cliques
A clique of a graph is a fully-connected set of nodes
A maximal clique is a clique which cannot be extended to
include additional nodes without losing the property of
being fully connected
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Parameterization

Joint probability distribution is given as a product of local
functions defined on the maximal cliques of the graph

p(x) =
1
Z

∏
C∈C

ψXC (xc)

with
Z =

∑
x

∏
C∈C

ψXC (xc)

Each ψXC (xC) is a strictly positive, real-valued function,
otherwise arbitrary

Z is called the partition function
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Potential functions are in general neither conditional or
marginal probabilities
Natural interpretation as agreement, constraint, energy
Potential function favours certain local configurations by
assigning them larger values
Global configurations that have high probability are,
roughly speaking, those that satisfy as many of the
favoured local configurations as possible
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Energy functions

Enforce positivity by defining

ψXC (xC) = exp{−EXC (xC)}

Negative sign is conventional (high probability, low energy)

p(x) =
1
Z

∏
C∈C

ψXC (xc) =
1
Z

exp{−
∑
C∈C

EXC (xC)}

Energy E(x) =
∑

C∈C EXC (xC)

Boltzmann distribution

p(x) =
1
Z

exp{−E(x)}
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Local Markov Property

Denote all nodes by V
For a vertex a, let ∂a denote the boundary of a, i.e. the set
of vertices in V\a that are neighbours of a
Local Markov property: For any vertex a, the conditional
distribution of Xa given XV\a depends only on X∂a
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Global conditional independence

Consider arbitrary disjoint index subsets A, B and C
If every path from a node in XA to a node in XC includes at
least one node in B then I(XA,XC |XB)
This is a naïve graph-theoretic separation condition (c.f.
d-separation)
Equivalence of conditional independence and clique
factorization form is the Hammersley-Clifford theorem
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Exact Inference in Undirected Graphical Models

Triangulate the graph if necessary
Use the junction tree algorithm discussed earlier
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Approximate Inference: Gibbs sampler

Loop T times
for each unit i to be sampled from

sample P(Xi |rest)
end for

end loop

This is a Markov Chain Monte Carlo (MCMC) method.
Under general conditions this will converge to the correct
distribution as T →∞
More general MCMC schemes are possible (e.g.
Metropolis-Hastings)
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Example I—Multivariate Gaussian

p(x) ∝ exp{−1
2

xT Σ−1x}

It is the zeros in Σ−1 that define the missing edges in the
graph and hence the conditional independence structure
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Example II—Markov Random Field

Discrete random
variables
Ising model in statistical
physics (spins up/down)
MRF models used in
image analysis, e.g.
segmentation of
regions. Define energies
such that blocks of the
same labels are
preferred (Geman and
Geman, 1984)
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Example: GrabCut

C. Rother, V. Kolmogorov, A. Blake. GrabCut: Interactive
Foreground Extraction using Iterated Graph Cuts.
SIGGRAPH’04, 2004
Builds Gaussian mixture models of foreground and
background pixels, and uses MRF prior on foreground
label field

Figure acknowledgement: MSR Cambridge GrabCut page
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Boltzmann machines

Hinton and Sejnowski (1983)
Binary units ±1

p(x) =
1
Z

exp{1
2

∑
ij

wijxixj}

wij = wji and wii = 0
set x0 = 1 (bias unit)
1
2

∑
ij wijxixj =

∑
i<j wijxixj

Can have hidden units
Potential function is not arbitrary function of cliques, but
only based on pairwise links (can generalize)
P(Xi = 1|rest) = σ(2hi) where hi =

∑
j wijxj
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hidden units

output (visible)
units
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Boltzmann machine learning rule

Denote visible units by x, hidden units by y

p(x,y) =
1
Z

exp{
∑

k

θkφk (x,y)}

This is the general form of a log linear model.

Features φk (x,y) are the pairwise potentials for a
Boltzmann machine
Parameters θk correspond to weights in the Boltzmann
machine
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p(x,y) =
1
Z

exp{
∑

k

θkφk (x,y)}

p(x) =
1
Z

∑
y

exp{
∑

k

θkφk (x,y)}

log p(x) = log
∑

y

exp{
∑

k

θkφk (x,y)} − log Z

∂log p(x)

∂θl
=

∑
y

φl(x,y)p(y|x)−
∑
x,y

φl(x,y)p(x,y)

def
= 〈φl(x,y)〉+ − 〈φl(x,y)〉−
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+ denotes the clamped phase (with x clamped on visible
units), − denotes the free-running phase (all unclamped)
Learning stops when statistics match in both phases
Statistics could be computed exactly (using junction tree
algorithm) but often this is intractable—use stochastic
sampling
Boltzmann machine learning can be slow due to the need
to use MCMC techniques. Gradient is the difference of two
noisy estimates
In Restricted Boltzmann Machines (RBMs), where there is
a layer of visible units and a layer of hidden units with
bipartite connections, learning can be more efficient
(Hinton, 2002)
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