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Hidden Variable Models Mixture Models

@ A single Gaussian might be a poor fit
@ Simplest form is 2 layer . .
structure
@ z hidden (latent) , x
visible (manifest)
@ Example 1: z is discrete
— mixture model )
@ Example 2: z is _ ' . _
continuous — factor @ Need mixture models for a multimodal density
analysis




Generating data from a mixture distribution

©® Letz be a 1-of-k indicator variable, with 3, z; = 1. for each datapoint
@ p(z; = 1) = m; is the probability of that the jth component is Choose a component with probability 7;
active Generate a sample from the chosen component density
@ 0 < <1forallj, and Z/’-‘:1 m=1 end for
@ The =;'s are called the mixing proportions Q

K
p(x) = p(zj=1)p(x|z = 1) Zw/p x|0;) Q Q
=

@ The p(x|0;)’s are called the mixture components

Responsibilities Maximum likelihood estimation for mixture models

n K
9) = Zln {Z?ij(x,'w/')}
p(zi=1)p(x|zi=1) i=1 j=1

’Y(zj) = p(Z] =1|x) = Zé p(ze = 1) p(x|ze = 1) oL _ Z op(x;|6;)
ez =1 %~ 2 Sl o0
C Y mep(x|ze=1) now use

op(xilo;) . 9Inp(x;0;)

@ 7(Z) is the posterior probability (or responsibility) for
component j to have generated datapoint x and therefore

oL oln p(x;|6;)
0 2.(@) 0;



Example: 1-d Gaussian mixture

At a maximum, set derivatives = 0

(x — ,uj)2 fi = 2?21 v(Zj)Xi
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Generalize to multivariate case

n Initial configuration Final configuration
f = 2= /()i : : e
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0%=0.46
prior = 0.60
-2
@ What happens if a component becomes responsible for a o2 4 6 wo 200

single data point? .
(Tipping, 1999)
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Example 2

Initial configuration Final configuration

-1 0 1 2 3

Mixture p(x)

Component 1:

1 = (1.98,0.09)
. 2

o“ =049

prior = 0.42

Component 2:
= (0.15,0.01)
0®=051
prior = 0.58

(Tipping, 1999)
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The EM algorithm

@ Q: How do we estimate parameters of a Gaussian mixture
distribution?

@ A: Use the re-estimation equations

o i)
/) n
> im1(Zj)
n NV
Ajz - Z/:1 'Y(Z/j)(xi - ﬂj)

iy (Zy)
. 1
R =~ ny(z,])
i

@ This is intuitively reasonable, but the EM algorithm shows that
these updates will converge to a local maximum of the likelihood
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Kullback-Leibler divergence

@ Measuring the “distance” between two probability densities P(x)
and Q(x).

P(xi)

Q(x;)

KL(PI|Q) =) P(x)log

@ Also called the relative entropy

@ Using logz < z — 1, can show that KL(P||Q) > 0 with equality
when P = Q.

@ Note that KL(P||Q) # KL(Q||P)

The EM algorithm

EM = Expectation-Maximization

@ Applies where there is incomplete (or missing) data

@ If this data were known a maximum likelihood solution would be
relatively easy

@ In a mixture model, the missing knowledge is which component
generated a given data point

@ Although EM can have slow convergence to the local maximum,
it is usually relatively simple and easy to implement. For
Gaussian mixtures it is the method of choice.
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= " Inp(xi[6)
s

Consider for just one Xx; first
log p(x;|0) = log p(x;, zi|0) — log p(zi[x;, 0).

Now introduce q(z;) and take expectations

Z q(2)) log p(x;, zil0) — Z q(2)) log p(zi[x;, 6)

0) (2i]x;,0)
— z)lo X, I‘ Z |O iRy
Ez,- q(z) g E q(z;) g a@)

d%ww+mmm

log p(x;|6) =
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From the non-negativity of the KL divergence, note that
Li(qi,0) < log p(x;|6)

i.e. £i(qj,0) is a lower bound on the log likelihood

We now set q(z;) = p(zj|x;,0°7) [E step]

Li(,0) = p(zilx;,0°%)log p(x;, 2i|6) — Y _ p(zilx;, 6°7) log p(zi[x;, 6°7)

Zj Z;

L1Qi(016°?) + H(ay)

Notice that H(q;) is independent of 6 (as opposed to #° )
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Now sum overcasesi=1,...,n
n n
0) = Li(q;,0) < _logp(xi6)
i=1 i=1
and

) =3 00010%) + 3 Hia)

“Q(el0) + " Hia)
i=1

where Q is called the expected complete-data log likelihood.
Thus to increase £(q, ) wrt & we need only increase Q(#0°%)

Best to choose [M step]
0 = argmax, Q(6|0°°)
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Chris Bishop, PRML 2006
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EM algorithm: Summary

E-step Calculate Q(6|6°) using the responsibilities p(z;|x;, #°9)
M-step Maximize Q(0]60°9) wrt 6

EM algorithm for mixtures of Gaussians

e izt PUIX: 09)x
: >o1q p(ilxi, 6°)
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T 2P 0%)

[Do mixture of Gaussians demo here]
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k-means clustering

initialize centres pq, ..., py
while (not terminated)
fori=1,...,n
calculate |x; — uj\z for all centres
assign datapoint i to the closest centre
end for
recompute each u; as the mean of the
datapoints assigned to it
end while

k-means algorithm is equivalent to the EM algorithm for
spherical covariances ¢?/ in the limit 0% — 0 for all j
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