Overview

Hidden Variable Models 1: Mixture Models

Chris Williams

School of Informatics, University of Edinburgh

October 2008

- Hidden variable models
- Mixture models
- Mixtures of Gaussians
- Aside: Kullback-Leibler divergence
- The EM algorithm
- Bishop §9.2, 9.3, 9.4

1/22 2/22

Hidden Variable Models

- Simplest form is 2 layer structure
- z hidden (latent) , x visible (manifest)
- Example 1: z is discrete
 → mixture model
- Example 2: z is continuous → factor analysis

Mixture Models

• A single Gaussian might be a poor fit

• Need mixture models for a multimodal density

3/22 4/22

Generating data from a mixture distribution

• Let **z** be a 1-of-*k* indicator variable, with $\sum_i z_i = 1$.

• $p(z_j = 1) = \pi_j$ is the probability of that the *j*th component is active

• $0 \le \pi_j \le 1$ for all j, and $\sum_{j=1}^k \pi_j = 1$

• The π_i 's are called the *mixing proportions*

$$p(\mathbf{x}) = \sum_{j=1}^{k} p(z_j = 1) p(\mathbf{x}|z_j = 1) = \sum_{j=1}^{k} \pi_j p(\mathbf{x}|\theta_j)$$

• The $p(\mathbf{x}|\theta_i)$'s are called the mixture components

for each datapoint

Choose a component with probability π_i

Generate a sample from the chosen component density end for

6/22

5/22

Responsibilities

Maximum likelihood estimation for mixture models

$$\gamma(z_j) \equiv \rho(z_j = 1 | \mathbf{x}) = \frac{\rho(z_j = 1) \ \rho(\mathbf{x} | z_j = 1)}{\sum_{\ell} \rho(z_{\ell} = 1) \ \rho(\mathbf{x} | z_{\ell} = 1)}$$
$$= \frac{\pi_j \ \rho(\mathbf{x} | z_j = 1)}{\sum_{\ell} \pi_{\ell} \ \rho(\mathbf{x} | z_{\ell} = 1)}$$

• $\gamma(z_j)$ is the posterior probability (or responsibility) for component j to have generated datapoint \mathbf{x}

$$L(\theta) = \sum_{i=1}^{n} \ln \left\{ \sum_{j=1}^{k} \pi_{j} p(\mathbf{x}_{i} | \theta_{j}) \right\}$$
$$\frac{\partial L}{\partial \theta_{j}} = \sum_{i} \frac{\pi_{j}}{\sum_{\ell} \pi_{\ell} p(\mathbf{x}_{i} | \theta_{\ell})} \frac{\partial p(\mathbf{x}_{i} | \theta_{j})}{\partial \theta_{j}}$$

now use

$$\frac{\partial p(\mathbf{x}_i|\theta_j)}{\partial \theta_j} = p(\mathbf{x}_i|\theta_j) \frac{\partial \ln p(\mathbf{x}_i|\theta_j)}{\partial \theta_j}$$

and therefore

$$\frac{\partial L}{\partial \theta_j} = \sum_{i} \gamma(z_{ij}) \frac{\partial \ln \rho(\mathbf{x}_i | \theta_j)}{\partial \theta_j}$$

7/22

Example: 1-d Gaussian mixture

$$p(x|\theta_j) = \frac{1}{(2\pi\sigma_j^2)^{1/2}} \exp\left\{-\frac{(x-\mu_j)^2}{2\sigma_j^2}\right\}$$
$$\frac{\partial L}{\partial \mu_j} = \sum_i \gamma(z_{ij}) \frac{(x_i - \mu_j)}{\sigma_j^2}$$
$$\frac{\partial L}{\partial \sigma_j^2} = \frac{1}{2} \sum_i \gamma(z_{ij}) \left[\frac{(x_i - \mu_j)^2}{\sigma_j^4} - \frac{1}{\sigma_j^2}\right]$$

At a maximum, set derivatives = 0

$$\hat{\mu}_j = \frac{\sum_{i=1}^n \gamma(z_{ij}) x_i}{\sum_{i=1}^n \gamma(z_{ij})}$$

$$\hat{\sigma}_j^2 = \frac{\sum_{i=1}^n \gamma(z_{ij}) (x_i - \hat{\mu}_j)^2}{\sum_{i=1}^n \gamma(z_{ij})}$$

$$\hat{\pi}_j = \frac{1}{n} \sum_i \gamma(z_{ij}).$$

9/22 10/22

Generalize to multivariate case

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} \gamma(z_{ij}) \mathbf{x}_{i}}{\sum_{i=1}^{n} \gamma(z_{ij})}$$

$$\hat{\Sigma}_{j} = \frac{\sum_{i=1}^{n} \gamma(z_{ij}) (\mathbf{x}_{i} - \hat{\mu}_{j}) (\mathbf{x}_{i} - \hat{\mu}_{j})^{T}}{\sum_{i=1}^{n} \gamma(z_{ij})}$$

$$\hat{\pi}_{j} = \frac{1}{n} \sum_{i} \gamma(z_{ij}).$$

 What happens if a component becomes responsible for a single data point?

Example

(Tipping, 1999)

11/22 12/22

Example 2

Kullback-Leibler divergence

• Measuring the "distance" between two probability densities P(x) and Q(x).

$$\mathit{KL}(P||Q) = \sum_{i} P(x_i) \log \frac{P(x_i)}{Q(x_i)}$$

- Also called the relative entropy
- Using $\log z \le z 1$, can show that $\mathit{KL}(P||Q) \ge 0$ with equality when P = Q.

14/22

• Note that $KL(P||Q) \neq KL(Q||P)$

(Tipping, 1999)
13/22

The EM algorithm

- Q: How do we estimate parameters of a Gaussian mixture distribution?
- A: Use the re-estimation equations

$$\hat{\mu}_{j} \leftarrow \frac{\sum_{i=1}^{n} \gamma(z_{ij}) x_{i}}{\sum_{i=1}^{n} \gamma(z_{ij})}$$

$$\hat{\sigma}_{j}^{2} \leftarrow \frac{\sum_{i=1}^{n} \gamma(z_{ij}) (x_{i} - \hat{\mu}_{j})^{2}}{\sum_{i=1}^{n} \gamma(z_{ij})}$$

$$\hat{\pi}_{j} \leftarrow \frac{1}{n} \sum_{i} \gamma(z_{ij}).$$

 This is intuitively reasonable, but the EM algorithm shows that these updates will converge to a local maximum of the likelihood

The EM algorithm

 ${\sf EM} = {\sf Expectation\text{-}Maximization}$

- Applies where there is incomplete (or missing) data
- If this data were known a maximum likelihood solution would be relatively easy
- In a mixture model, the missing knowledge is which component generated a given data point
- Although EM can have slow convergence to the local maximum, it is usually relatively simple and easy to implement. For Gaussian mixtures it is the method of choice.

15/22

The nitty-gritty

$$L(\theta) = \sum_{i=1}^{n} \ln p(\mathbf{x}_{i}|\theta)$$

Consider for just one \mathbf{x}_i first

$$\log p(\mathbf{x}_i|\theta) = \log p(\mathbf{x}_i, \mathbf{z}_i|\theta) - \log p(\mathbf{z}_i|\mathbf{x}_i, \theta).$$

Now introduce $q(\mathbf{z}_i)$ and take expectations

$$\begin{aligned} \log p(\mathbf{x}_i|\theta) &= \sum_{z_i} q(\mathbf{z}_i) \log p(\mathbf{x}_i, \mathbf{z}_i|\theta) - \sum_{z_i} q(\mathbf{z}_i) \log p(\mathbf{z}_i|\mathbf{x}_i, \theta) \\ &= \sum_{z_i} q(\mathbf{z}_i) \log \frac{p(\mathbf{x}_i, \mathbf{z}_i|\theta)}{q(\mathbf{z}_i)} - \sum_{z_i} q(\mathbf{z}_i) \log \frac{p(\mathbf{z}_i|\mathbf{x}_i, \theta)}{q(\mathbf{z}_i)} \\ &\stackrel{\text{def}}{=} \mathcal{L}_i(q_i, \theta) + \textit{KL}(q_i||p_i) \end{aligned}$$

From the non-negativity of the KL divergence, note that

$$\mathcal{L}_i(q_i, \theta) \leq \log p(\mathbf{x}_i | \theta)$$

i.e. $\mathcal{L}_i(q_i, \theta)$ is a *lower bound* on the log likelihood

We now set $q(\mathbf{z}_i) = p(\mathbf{z}_i | \mathbf{x}_i, \theta^{old})$ [E step]

$$\mathcal{L}_{i}(q_{i}, \theta) = \sum_{z_{i}} p(\mathbf{z}_{i} | \mathbf{x}_{i}, \theta^{old}) \log p(\mathbf{x}_{i}, \mathbf{z}_{i} | \theta) - \sum_{z_{i}} p(\mathbf{z}_{i} | \mathbf{x}_{i}, \theta^{old}) \log p(\mathbf{z}_{i} | \mathbf{x}_{i}, \theta^{old})$$

$$\stackrel{\text{def}}{=} Q_{i}(\theta | \theta^{old}) + H(q_{i})$$

Notice that $H(q_i)$ is independent of θ (as opposed to θ^{old})

17/22 18/22

Now sum over cases i = 1, ..., n

$$\mathcal{L}(q, \theta) = \sum_{i=1}^{n} \mathcal{L}_i(q_i, \theta) \leq \sum_{i=1}^{n} \log p(\mathbf{x}_i | \theta)$$

and

$$egin{aligned} \mathcal{L}(q, heta) &= \sum_{i=1}^n Q_i(heta| heta^{old}) + \sum_{i=1}^n H(q_i) \ &\stackrel{ ext{def}}{=} Q(heta| heta^{old}) + \sum_{i=1}^n H(q_i) \end{aligned}$$

where Q is called the expected complete-data log likelihood. Thus to increase $\mathcal{L}(q,\theta)$ wrt θ we need only increase $Q(\theta|\theta^{old})$

Best to choose [M step]

$$\theta = \operatorname{argmax}_{\theta} Q(\theta | \theta^{old})$$

Chris Bishop, PRML 2006

19/22 20/22

EM algorithm: Summary

E-step Calculate $Q(\theta|\theta^{old})$ using the responsibilities $p(\mathbf{z}_i|\mathbf{x}_i,\theta^{old})$ M-step Maximize $Q(\theta|\theta^{old})$ wrt θ

EM algorithm for mixtures of Gaussians

$$\mu_j^{\text{new}} \leftarrow \frac{\sum_{i=1}^n p(j|x_i, \theta^{\text{old}}) x_i}{\sum_{i=1}^n p(j|x_i, \theta^{\text{old}})}$$
$$(\sigma_j^2)^{\text{new}} \leftarrow \frac{\sum_{i=1}^n p(j|x_i, \theta^{\text{old}}) (x_i - \mu_j^{\text{new}})^2}{\sum_{i=1}^n p(j|x_i, \theta^{\text{old}})}$$
$$\pi_j^{\text{new}} \leftarrow \frac{1}{n} \sum_{i=1}^n p(j|x_i, \theta^{\text{old}}).$$

[Do mixture of Gaussians demo here]

k-means clustering

```
initialize centres \mu_1,\dots,\mu_k while (not terminated) for i=1,\dots,n calculate |\mathbf{x}_i-\mu_j|^2 for all centres assign datapoint i to the closest centre end for recompute each \mu_j as the mean of the datapoints assigned to it end while
```

k-means algorithm is equivalent to the EM algorithm for spherical covariances $\sigma_j^2 I$ in the limit $\sigma_i^2 \to 0$ for all j

21/22