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Overview
o Maximum likelihood parameter estimation
e Example: multinomial

e Example: Gaussian

ML parameter estimation in belief networks

Properties of ML estimators

Reading: Tipping chapter 5, Jordan chapter 5

e For points generated independently and identically distributed (iid) from
p(x), the likelihood of the data set is

£8) = T] p(xi10)

=1

e Often convenient to take logs,

n
L=logL =) logp(x;|0)

1=1

e Maximum likelihood parameter estimation chooses 6 to maximize L
(same as maximizing £ as log is monotonic)

Setting parameters
We choose a parametric model p(x|0)
We are given data x1,...,Xn
How can we choose 0 to best approximate the true density p(x)?

Define the likelihood of x; as

Li(0) = p(x;|6)

Example: multinomial distribution
Consider an experiment with n independent trials
Each trial can result in any of r possible outcomes (e.g. a die)
p; denotes the probability of outcome ¢, >\ pi =1
n; denotes the number of trials resulting in outcome ¢, Z:zl ni=mn
p=(p1,---,pr),n=_(n1,...,n)
Show that
cp) =[]
=1

Hence show that the maximum likelihood estimate for p; is
o ny
pi = —

n



Gaussian example

e likelihood for one data point z; in 1-d
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Log likelihood for n data points
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e Show that
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ML parameter estimation in fully observable belief
networks

k
P(X1,..., X40) = [[ P(X;|Pa;,0))

j=1
e Show that parameter estimation for §; depends only on statistics of (X, Pa;)
e Discrete variables: CPTs

Nk

>

P(X2 = Sk|X1 = Sj) ==

e Gaussian variables
Y = py + wy(X — pe) + Ny
Estimation of p., py, w, and vy, is a linear regression problem
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e For the multivariate Gaussian
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Example of ML Learning in a Belief Network
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From the table of data we obtain the following ML estimates for the CPTs

P(R = yes)

P(S = yes)

P(W = yes|R = yes)

P(W = yes|R = no)

P(H = yes|R = yes, S = yes)
P(H = yes|R = yes, S = no)
P(H = yes|R = no, S = yes)

P(H = yes|R = no, S = no)

e For n very large ML estimators are approximately unbiased

e Variance

One can also be interested in the variance of an estimator, i.e.

E[(6 - 6)?]

e ML estimators have variance nearly as small as can be achieved by any

estimator

e The MLE is approximately the minimum variance unbiased estimator

(MVUE) of 6
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Properties of ML estimators

An estimator is consistent if it converges to the true value as the sample
size n — oo. Consistency is a “good thing”

Bias
An estimator 4 is unbiased if E[A] = 6. The expectation is wrt data
drawn from the model p(-|9)

The estimator z for the mean of a Gaussian is unbiased

The estimator 2 for the variance of a Gaussian is biased, with
E[&Z] — n;lo.Q



