Maximum Likelihood

Chris Williams, School of Informatics University of Edinburgh

Overview

• Maximum likelihood parameter estimation

• Example: multinomial

• Example: Gaussian

• ML parameter estimation in belief networks

• Properties of ML estimators

• Reading: Tipping chapter 5, Jordan chapter 5

• For points generated *independently and identically distributed* (iid) from $p(\mathbf{x})$, the likelihood of the data set is

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{n} p(\mathbf{x}_i | \boldsymbol{\theta})$$

• Often convenient to take logs,

$$L = \log \mathcal{L} = \sum_{i=1}^{n} \log p(\mathbf{x}_i | \boldsymbol{\theta})$$

• *Maximum likelihood* parameter estimation chooses θ to maximize L (same as maximizing \mathcal{L} as log is monotonic)

Setting parameters

- We choose a parametric model $p(\mathbf{x}|\boldsymbol{\theta})$
- We are given data x_1, \dots, x_n
- How can we choose θ to best approximate the true density p(x)?
- Define the *likelihood* of x_i as

$$\mathcal{L}_i(\theta) = p(\mathbf{x}_i | \theta)$$

Example: multinomial distribution

- ullet Consider an experiment with n independent trials
- ullet Each trial can result in any of r possible outcomes (e.g. a die)
- p_i denotes the probability of outcome $i, \sum_{i=1}^r p_i = 1$
- n_i denotes the number of trials resulting in outcome $i, \sum_{i=1}^r n_i = n$
- $\mathbf{p} = (p_1, \dots, p_r), \mathbf{n} = (n_1, \dots, n_r)$
- Show that

$$\mathcal{L}(\mathbf{p}) = \prod_{i=1}^r p_i^{n_i}$$

• Hence show that the maximum likelihood estimate for p_i is

$$\hat{p}_i = \frac{n_i}{n}$$

Gaussian example

• likelihood for one data point x_i in 1-d

$$p(x_i|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp{-\left\{\frac{(x_i-\mu)^2}{2\sigma^2}\right\}}$$

• Log likelihood for n data points

$$L = -\frac{1}{2} \sum_{i=1}^{n} \left[\log(2\pi\sigma^{2}) + \frac{(x_{i} - \mu)^{2}}{\sigma^{2}} \right]$$

· Show that

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

and

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

ML parameter estimation in fully observable belief networks

$$P(X_1,\ldots,X_k|\boldsymbol{\theta}) = \prod_{j=1}^k P(X_j|Pa_j,\theta_j)$$

- Show that parameter estimation for θ_j depends only on statistics of (X_j, Pa_j)
- Discrete variables: CPTs

$$P(X_2 = s_k | X_1 = s_j) = \frac{n_{jk}}{\sum_l n_{jl}}$$

Gaussian variables

$$Y = \mu_y + w_y(X - \mu_x) + N_y$$

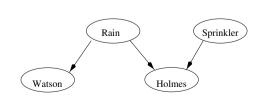
Estimation of μ_x , μ_y , w_y and v_{N_y} is a linear regression problem

For the multivariate Gaussian

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \hat{\boldsymbol{\mu}}) (\mathbf{x}_i - \hat{\boldsymbol{\mu}})^T$$

Example of ML Learning in a Belief Network



From the table of data we obtain the following ML estimates for the CPTs

$$P(R = yes) = 2/10 = 0.2$$

 $P(S = yes) = 1/10 = 0.1$
 $P(W = yes|R = yes) = 2/2 = 1$
 $P(W = yes|R = no) = 2/8 = 0.25$
 $P(H = yes|R = yes, S = yes) = 1/1 = 1.0$
 $P(H = yes|R = yes, S = no) = 1/1 = 1.0$
 $P(H = yes|R = no, S = yes) = 0/0$
 $P(H = yes|R = no, S = no) = 0/8 = 0.0$

- For *n* very large ML estimators are approximately unbiased
- Variance

One can also be interested in the variance of an estimator, i.e. $E[(\hat{\theta} - \theta)^2]$

- ML estimators have variance nearly as small as can be achieved by any estimator
- \bullet The MLE is approximately the minimum variance unbiased estimator (MVUE) of θ

Properties of ML estimators

• An estimator is **consistent** if it converges to the true value as the sample size $n \to \infty$. Consistency is a "good thing"

• Bias

An estimator $\hat{\theta}$ is unbiased if $E[\hat{\theta}] = \theta$. The expectation is wrt data drawn from the model $p(\cdot|\theta)$

- ullet The estimator $\hat{\mu}$ for the mean of a Gaussian is unbiased
- \bullet The estimator $\hat{\sigma}^2$ for the variance of a Gaussian is biased, with $E[\hat{\sigma}^2]=\frac{n-1}{n}\sigma^2$