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Setting parameters

@ We choose a parametric model p(x|6)

@ We are given data X1,...,Xp
@ How can we choose @ to best approximate the true density
p(x)?

@ Define the likelihood of x; as

Li(0) = p(x;|0)



@ For points generated independently and identically
distributed (iid) from p(x), the likelihood of the data set is

n

£(6) = ] pxil6)

i=1

@ Often convenient to take logs,

n
L=logL =" logp(x;0)
i=

@ Maximum likelihood parameter estimation chooses 6 to
maximize L (same as maximizing £ as log is monotonic)



Example: multinomial distribution

@ Consider an experiment with n independent trials
@ Each trial can result in any of r possible outcomes (e.g. a die)
@ ¢; denotes the probability of outcome i, 3°7_, 6 = 1

@ n; denotes the number of trials resulting in outcome J,

Signi=n
@ 0=(61,...,0;),n=(nq,...,n)
@ Show that ,
ce)=TJop
i=1
@ Hence show that the maximum likelihood estimate for 6; is
6 ="
n



Gaussian example

@ likelihood for one data point x; in 1-d
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@ Log likelihood for n data points

n
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@ For the multivariate Gaussian
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ML parameter estimation in fully observable belief
networks

k
P(Xi,.... X|0) = [ P(X;|Pa;.0))

=1

@ Show that parameter estimation for #; depends only on statistics
of (X;, Pa)
@ Discrete variables: CPTs

A~ n;
9(X2 = Sk|X1 = S/') = Z,ﬂ;j/

@ Gaussian variables
Y =y + wy(X — px) + Ny

Estimation of yix, 11y, wy, and vy, is a linear regression problem
(see Bishop §3.1.1)



s
S
o

2
)

Z

—

9

[

m
V]

=
(@)

=
c
S
9y)
L))

—l

—

=

Y
@)

Qo
Q
S
©
x

L

R S H W

/

> C > C

Cc Cc Cc C

Cc C C C

Cc Cc Cc C

Watson

>

12



From the table of data we obtain the following ML estimates for the

CPTs
O(R=yes) = 2/10=0.2
6(S=yes) = 1/10=0.1
(W = yes|R=yes) = 2/2=1
(W =yes|R=no) = 2/8=0.25
)(H = yes|R =yes,S=yes) = 1/1=1.0
O(H=yes|R=yes,S=no) = 1/1=1.0
O(H = yes|R=no,S=yes) = 0/0
O(H=yes|R=no,S=no) = 0/8=0.0
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Properties of ML estimators

@ An estimator is consistent if it converges to the true value
as the sample size n — oo. Consistency is a “good thing”

@ Bias A A
An estimator 6 is unbiased if E[0] = 6. The expectation is
wrt data drawn from the model p(-|0)

@ The estimator /i for the mean of a Gaussian is unbiased
@ The estimator 52 for the variance of a Gaussian is biased,
with E[6?] = 1452

@ For nvery large ML estimators are approximately unbiased
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@ Variance
One can also be interested in the variance of an estimator,
i.e. E[(60 — 0)2]

@ ML estimators have variance nearly as small as can be
achieved by any estimator

@ The MLE is approximately the minimum variance unbiased
estimator (MVUE) of 6
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