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Setting parameters

@ For points generated independently and identically
distributed (iid) from p(x), the likelihood of the data set is

n

@ We choose a parametric model p(x|0) £(6) = HP(XiW)

@ We are given data x4,...,Xp i=1

@ How can we choose 6 to best approximate the true density
p(x)?

@ Define the likelihood of x; as

@ Often convenient to take logs,

n
L=logL =" logp(xi|)
L;(0) = p(xi|6) =
@ Maximum likelihood parameter estimation chooses 6 to
maximize L (same as maximizing £ as log is monotonic)



Example: multinomial distribution Gaussian example

@ Consider an experiment with nindependent trials @ likelihood for one data point x; in 1-d
@ Each trial can result in any of r possible outcomes (e.g. a die) N 1 (xi — p)?
’ (XI|/”H ) (2 0_2)1/2 eXp - 202
@ ¢; denotes the probability of outcome i, >, ,6; =1
@ n; denotes the number of trials resulting in outcome 1, @ Log likelihood for n data points
Siini=n 1 — (xi — p)?
= _ ' 2 i — )
— (01,...,0,), 0= (N1,....n,) L= 2; ['°g(2” )+ }
@ Show that r @ Show that
— H en, R ‘1 n
il =527
i=1
@ Hence show that the maximum likelihood estimate for ¢; is @ and
N n; . 1 & R
(9/:;/ UZZEZ(XI—H)Z

ML parameter estimation in fully observable belief
networks

@ For the multivariate Gaussian k
P(Xi,..., X|0) = [ | P(Xi|Pa;,6))

J=1

=33
fo=—
N4 @ Show that parameter estimation for 6; depends only on statistics
/
of (X, Pa;)

1 AT @ Discrete variables: CPTs
= h Z f)(Xi — 1) R Nix

i=1 0(Xo = sk| X1 = 5) =

( | /) ZI nj/

@ Gaussian variables
Y:,Uzy"'Wy(X—,LLx)“‘Ny

Estimation of s, 1y, wy and vy, is a linear regression problem
(see Bishop §3.1.1)



Example of ML Learning in a Belief Network

From the table of data we obtain the following ML estimates for the

CPTs
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Properties of ML estimators

(S yes

O(W = yes|R = yes

O(W = yes|R = no

H = yes|R = yes, S = yes
(H = yes|R = yes,S = no
H = yes|R=no, S = yes
(H=yes|R=no,S=no
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2/10=0.2
1/10 = 0.1
2/2 =1
2/8 =0.25
1/1=1.0
1/1=1.0
0/0
0/8=0.0

@ An estimator is consistent if it converges to the true value © Variance . _ _
as the sample size n — co. Consistency is a “good thing” One can also be interested in the variance of an estimator,
. i.e. E[(0 — 0)?]
@ Bias

An estimator @ is unbiased if E[f] = 6. The expectation is
wrt data drawn from the model p(-|9)

@ The estimator /i for the mean of a Gaussian is unbiased

@ The estimator 42 for the variance of a Gaussian is biased,
with E[5?] = 2152

@ For nvery large ML estimators are approximately unbiased
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@ ML estimators have variance nearly as small as can be
achieved by any estimator

@ The MLE is approximately the minimum variance unbiased
estimator (MVUE) of ¢
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