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Overview

Maximum likelihood parameter estimation
Example: multinomial
Example: Gaussian
ML parameter estimation in belief networks
Properties of ML estimators
Reading: Bishop §2.2 (multinomial), §2.3.4 (Gaussian)
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Setting parameters

We choose a parametric model p(x|θ)

We are given data x1, . . . , xn

How can we choose θ to best approximate the true density
p(x)?
Define the likelihood of xi as

Li(θ) = p(xi |θ)
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For points generated independently and identically
distributed (iid) from p(x), the likelihood of the data set is

L(θ) =
n∏

i=1

p(xi |θ)

Often convenient to take logs,

L = logL =
n∑

i=1

log p(xi |θ)

Maximum likelihood parameter estimation chooses θ to
maximize L (same as maximizing L as log is monotonic)
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Example: multinomial distribution

Consider an experiment with n independent trials

Each trial can result in any of r possible outcomes (e.g. a die)

θi denotes the probability of outcome i ,
∑r

i=1 θi = 1

ni denotes the number of trials resulting in outcome i ,∑r
i=1 ni = n

θ = (θ1, . . . , θr ), n = (n1, . . . , nr )

Show that

L(θ) =
r∏

i=1

θni
i

Hence show that the maximum likelihood estimate for θi is

θ̂i =
ni

n
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Gaussian example

likelihood for one data point xi in 1-d

p(xi |µ, σ2) =
1

(2πσ2)1/2 exp−
{

(xi − µ)2

2σ2

}
Log likelihood for n data points

L = −1
2

n∑
i=1

[
log(2πσ2) +

(xi − µ)2

σ2

]
Show that

µ̂ =
1
n

n∑
i=1

xi

and

σ̂2 =
1
n

n∑
i=1

(xi − µ̂)2
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For the multivariate Gaussian

µ̂ =
1
n

n∑
i=1

xi

Σ̂ =
1
n

n∑
i=1

(xi − µ̂)(xi − µ̂)T
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ML parameter estimation in fully observable belief
networks

P(X1, . . . , Xk |θ) =
k∏

j=1

P(Xj |Paj , θj)

Show that parameter estimation for θj depends only on statistics
of (Xj , Paj)

Discrete variables: CPTs

θ̂(X2 = sk |X1 = sj) =
njk∑

l njl

Gaussian variables

Y = µy + wy (X − µx) + Ny

Estimation of µx , µy , wy and vNy is a linear regression problem
(see Bishop §3.1.1)
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Example of ML Learning in a Belief Network

R S H W
n n n n
n n n n
y n y y
n n n n
n n n n
n n n y
n n n n
n n n y
n n n n
y y y y HolmesWatson

Rain Sprinkler
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From the table of data we obtain the following ML estimates for the
CPTs

θ̂(R = yes) = 2/10 = 0.2
θ̂(S = yes) = 1/10 = 0.1

θ̂(W = yes|R = yes) = 2/2 = 1
θ̂(W = yes|R = no) = 2/8 = 0.25

θ̂(H = yes|R = yes, S = yes) = 1/1 = 1.0
θ̂(H = yes|R = yes, S = no) = 1/1 = 1.0
θ̂(H = yes|R = no, S = yes) = 0/0
θ̂(H = yes|R = no, S = no) = 0/8 = 0.0
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Properties of ML estimators

An estimator is consistent if it converges to the true value
as the sample size n →∞. Consistency is a “good thing”
Bias
An estimator θ̂ is unbiased if E [θ̂] = θ. The expectation is
wrt data drawn from the model p(·|θ)
The estimator µ̂ for the mean of a Gaussian is unbiased
The estimator σ̂2 for the variance of a Gaussian is biased,
with E [σ̂2] = n−1

n σ2

For n very large ML estimators are approximately unbiased
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Variance
One can also be interested in the variance of an estimator,
i.e. E [(θ̂ − θ)2]

ML estimators have variance nearly as small as can be
achieved by any estimator
The MLE is approximately the minimum variance unbiased
estimator (MVUE) of θ

12 / 12


