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Relationships between courses

PMR Probabilistic modelling and reasoning. Focus on probabilistic
modelling. Learning and inference for probabilistic models, e.g.
Probabilistic expert systems, latent variable models, Hidden
Markov models, Kalman filters, Boltzmann machines.

IAML Introductory Applied Machine Learning. Basic introductory
course on supervised and unsupervised learning

MLPR More advanced course on machine learning, including coverage
of Bayesian methods

RL Reinforcement Learning. Focus on Reinforcement Learning (i.e.
delayed reward).

DME Develops ideas from IAML, PMR to deal with real-world data
sets. Also data visualization and new techniques.
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Dealing with Uncertainty

The key foci of this course are
1 The use of probability theory as a calculus of uncertainty
2 The learning of probability models from data

Graphical descriptions are used to define (in)dependence

Probabilistic graphical models give us a framework for dealing
with hidden-cause (or latent variable) models

Probability models can be used for classification problems, by
building a probability density model for each class
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Example 1: QMR-DT

Diagnostic aid in the
domain of internal
medicine
600 diseases, 4000
symptom nodes
Task is to infer diseases
given symptoms

diseases

symptoms

Shaded nodes represent obser-
vations
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Example 2: Inference for Automated Driving

Model of a
vision-based
lane sensor
for car driving
Dynamic
belief
network—
performing
inference
through time
See Russell
and Norvig,
§17.5
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Further Examples

Automated Speech Recognition using Hidden Markov Models
acoustic signal → phones → words

Detecting genes in DNA (Krogh, Mian, Haussler, 1994)

Tracking objects in images (Kalman filter and extensions)

Troubleshooting printing problems under Windows 95
(Heckerman et al, 1995)

Robot navigation: inferring where you are
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Probability Theory

Why probability?

Events, Probability

Variables

Joint distribution

Conditional Probability

Bayes’ Rule

Inference

Reference: e.g. Bishop §1.2; Russell and Norvig, chapter 14
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Why probability?

Even if the world were deterministic, probabilistic assertions
summarize effects of

laziness: failure to enumerate exceptions, qualifications etc.

ignorance: lack of relevant facts, initial conditions etc.

Other approaches to dealing with uncertainty

Default or non-monotonic logics

Certainty factors (as in MYCIN) – ad hoc

Dempster-Shafer theory

Fuzzy logic handles degree of truth, not uncertainty
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Events

The set of all possible outcomes of an experiment is called the
sample space, denoted by Ω

Events are subsets of Ω

If A and B are events, A ∩ B is the event “A and B”; A ∪ B is the
event “A or B”; Ac is the event “not A”

A probability measure is a way of assigning probabilities to
events s.t

P(∅) = 0, P(Ω) = 1
If A ∩ B = ∅

P(A ∪ B) = P(A) + P(B)

i.e. probability is additive for disjoint events

Example: when two fair dice are thrown, what is the probability
that the sum is 4?
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Variables

A variable takes on values from a collection of mutually exclusive
and collectively exhaustive states, where each state
corresponds to some event

A variable X is a map from the sample space to the set of states

Examples of variables

Colour of a car blue, green, red
Number of children in a family 0, 1, 2, 3, 4, 5, 6, > 6
Toss two coins, let X = (number of heads)2. X can take on
the values 0, 1 and 4.

Random variables can be discrete or continuous

Use capital letters to denote random variables and lower case
letters to denote values that they take, e.g. P(X = x)∑

x P(X = x) = 1
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Probability: Frequentist and Bayesian

Frequentist probabilities are defined in the limit of an infinite
number of trials

Example: “The probability of a particular coin landing heads up
is 0.43”

Bayesian (subjective) probabilities quantify degrees of belief

Example: “The probability of it raining tomorrow is 0.3”

Not possible to repeat “tomorrow” many times

Frequentist interpretation is a special case
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Joint distributions

Properties of several random variables are important for
modelling complex problems
Suppose Toothache and Cavity are the variables:

Toothache = true Toothache = false
Cavity = true 0.04 0.06
Cavity = false 0.01 0.89

Notation
P(Toothache = true, Cavity = false) = 0.01
Notation

P(Toothache = true, Cavity = false) = P(Cavity = false, Toothache = true)
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Marginal Probabilities

The sum rule
P(X ) =

∑
Y

P(X , Y )

e.g. P(Toothache = true) =?
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Conditional Probability

Let X and Y be two disjoint subsets of variables, such that
P(Y = y) > 0. Then the conditional probability distribution
(CPD) of X given Y = y is given by

P(X = x|Y = y) = P(x|y) =
P(x, y)

P(y)

Product rule

P(X, Y) = P(X)P(Y|X) = P(Y)P(X|Y)

Example: In the dental example, what is
P(Cavity = true|Toothache = true)?∑

x P(X = x|Y = y) = 1 for all y
Can we say anything about

∑
y P(X = x|Y = y) ?
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• Chain rule is derived by repeated application of the product
rule

P(X1, . . . , Xn) = P(X1, . . . , Xn−1)P(Xn|X1, . . . , Xn−1)

= P(X1, . . . , Xn−2)P(Xn−1|X1, . . . , Xn−2)

P(Xn|X1, . . . , Xn−1)

= . . .

=
n∏

i=1

P(Xi |X1, . . . , Xi−1)

• Exercise: give six decompositions of p(x , y , z) using the
chain rule
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Bayes’ Rule

From the product rule,

P(X|Y) =
P(Y|X)P(X)

P(Y)

From the sum rule the denominator is

P(Y) =
∑

X

P(Y|X)P(X)
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Why is this useful?

For assessing diagnostic probability from causal probability

P(Cause|Effect) =
P(Effect |Cause)P(Cause)

P(Effect)

Example: let M be meningitis, S be stiff neck

P(M|S) =
P(S|M)P(M)

P(S)
=

0.8× 0.0001
0.1

= 0.0008

Note: posterior probability of meningitis still very small
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Evidence: from Prior to Posterior

Prior probability P(Cavity = true) = 0.1

After we observe Toothache = true, we obtain the posterior
probability P(Cavity = true|Toothache = true)

This statement is dependent on the fact that Toothache = true is
all I know

Revised probability of toothache if, say, I have a dental
examination....

Some information may be irrelevant, e.g.
P(Cavity = true|Toothache = true, DiceRoll = 5)
= P(Cavity = true|Toothache = true)
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Inference from joint distributions

Typically, we are interested in the posterior joint distribution
of the query variables XF given specific values e for the
evidence variables XE

Remaining variables XR = X\(XF ∪ XE)

Sum out over XR

P(XF |XE = e) =
P(XF , XE = e)

P(XE = e)

=

∑
r P(XF , XR = r, XE = e)∑

r,f P(XF = f, XR = r, XE = e)
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Problems with naïve inference:

Worst-case time complexity O(dn) where d is the largest
arity
Space complexity O(dn) to store the joint distribution
How to find the numbers for O(dn) entries???
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Decision Theory

DecisionTheory = ProbabilityTheory + UtilityTheory

When making actions, an agent will have preferences
about different possible outcomes
Utility theory can be used to represent and reason with
preferences
A rational agent will select the action with the highest
expected utility
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Summary

Course foci:

Probability theory as calculus of uncertainty
Inference in probabilistic graphical models
Learning probabilistic models form data

Events, random variables

Joint, conditional probability

Bayes rule, evidence

Decision theory
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