Course Introduction

Probabilistic Modelling and Reasoning

Chris Williams
School of Informatics, University of Edinburgh
September 2008

- Welcome
- Administration
 - Handout
 - Books
 - Assignments
 - Tutorials
 - Course rep(s)
- Maths level

Relationships between courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAML</td>
<td>Introductory Applied Machine Learning. Basic introductory course on supervised and unsupervised learning</td>
</tr>
<tr>
<td>MLPR</td>
<td>More advanced course on machine learning, including coverage of Bayesian methods</td>
</tr>
<tr>
<td>RL</td>
<td>Reinforcement Learning. Focus on Reinforcement Learning (i.e. delayed reward).</td>
</tr>
<tr>
<td>DME</td>
<td>Develops ideas from IAML, PMR to deal with real-world data sets. Also data visualization and new techniques.</td>
</tr>
</tbody>
</table>

Dealing with Uncertainty

- The key foci of this course are
 1. The use of probability theory as a calculus of uncertainty
 2. The learning of probability models from data
- Graphical descriptions are used to define (in)dependence
- Probabilistic graphical models give us a framework for dealing with hidden-cause (or latent variable) models
- Probability models can be used for classification problems, by building a probability density model for each class
Example 1: QMR-DT

- Diagnostic aid in the domain of internal medicine
- 600 diseases, 4000 symptom nodes
- Task is to infer diseases given symptoms

Example 2: Inference for Automated Driving

- Model of a vision-based lane sensor for car driving
- Dynamic belief network—performing inference through time
- See Russell and Norvig, §17.5

Further Examples

- Automated Speech Recognition using Hidden Markov Models
- acoustic signal → phones → words
- Detecting genes in DNA (Krogh, Mian, Haussler, 1994)
- Tracking objects in images (Kalman filter and extensions)
- Troubleshooting printing problems under Windows 95 (Heckerman et al, 1995)
- Robot navigation: inferring where you are

Probability Theory

- Why probability?
- Events, Probability
- Variables
- Joint distribution
- Conditional Probability
- Bayes’ Rule
- Inference
- Reference: e.g. Bishop §1.2; Russell and Norvig, chapter 14
Why probability?

Even if the world were deterministic, probabilistic assertions summarize effects of:
- **laziness**: failure to enumerate exceptions, qualifications etc.
- **ignorance**: lack of relevant facts, initial conditions etc.

Other approaches to dealing with uncertainty:
- Default or non-monotonic logics
- Certainty factors (as in MYCIN) – *ad hoc*
- Dempster-Shafer theory
- Fuzzy logic handles degree of truth, not uncertainty

Events

- The set of all possible outcomes of an experiment is called the **sample space**, denoted by Ω.
- Events are subsets of Ω.
- If A and B are events, $A \cap B$ is the event “A and B”; $A \cup B$ is the event “A or B”; A^c is the event “not A”.
- A probability measure is a way of assigning probabilities to events so that:
 - $P(\emptyset) = 0$, $P(\Omega) = 1$.
 - If $A \cap B = \emptyset$, $P(A \cup B) = P(A) + P(B)$.
- i.e. probability is additive for disjoint events.
- **Example**: when two fair dice are thrown, what is the probability that the sum is 4?

Variables

- A variable takes on values from a collection of mutually exclusive and collectively exhaustive states, where each state corresponds to some event.
- A variable X is a map from the sample space to the set of states.
- Examples of variables:
 - Colour of a car: blue, green, red
 - Number of children in a family: 0, 1, 2, 3, 4, 5, 6, > 6
 - Toss two coins, let $X =$ (number of heads)2. X can take on the values 0, 1 and 4.
- Random variables can be **discrete** or **continuous**.
- Use capital letters to denote random variables and lower case letters to denote values that they take, e.g. $P(X = x)$.
- $\sum_x P(X = x) = 1$.

Probability: Frequentist and Bayesian

- **Frequentist** probabilities are defined in the limit of an infinite number of trials.
- Example: “The probability of a particular coin landing heads up is 0.43”.
- **Bayesian** (subjective) probabilities quantify **degrees of belief**.
- Example: “The probability of it raining tomorrow is 0.3”.
- Not possible to repeat “tomorrow” many times.
- Frequentist interpretation is a special case.
Joint distributions

Properties of several random variables are important for modelling complex problems.

Suppose Toothache and Cavity are the variables:

Cavity = true	Toothache = true	0.04
Cavity = true	Toothache = false	0.06
Cavity = false	0.01	
Cavity = false	0.89	

Notation

\[P(\text{Toothache} = \text{true}, \text{Cavity} = \text{false}) = 0.01 \]

Marginal Probabilities

The sum rule

\[P(X) = \sum_{Y} P(X, Y) \]

E.g. \(P(\text{Toothache} = \text{true}) = ? \)

Conditional Probability

Let \(X \) and \(Y \) be two disjoint subsets of variables, such that \(P(Y = y) > 0 \). Then the conditional probability distribution (CPD) of \(X \) given \(Y = y \) is given by

\[P(X = x | Y = y) = P(x | y) = \frac{P(x, y)}{P(y)} \]

Product rule

\[P(X, Y) = P(X)P(Y | X) = P(Y)P(X | Y) \]

Example: In the dental example, what is \(P(\text{Cavity} = \text{true} | \text{Toothache} = \text{true}) \)?

\[\sum_{x} P(X = x | Y = y) = 1 \text{ for all } y \]

Can we say anything about \(\sum_{y} P(X = x | Y = y) \)?

Chain rule is derived by repeated application of the product rule

\[P(X_1, \ldots, X_n) = P(X_1, \ldots, X_{n-1})P(X_n | X_1, \ldots, X_{n-1}) \]
\[= P(X_1, \ldots, X_{n-2})P(X_{n-1} | X_1, \ldots, X_{n-2})P(X_n | X_1, \ldots, X_{n-1}) \]
\[= \ldots \]
\[= \prod_{i=1}^{n} P(X_i | X_1, \ldots, X_{i-1}) \]
Bayes’ Rule

- From the product rule,
 \[P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)} \]
- From the sum rule the denominator is
 \[P(Y) = \sum_X P(Y|X)P(X) \]

Why is this useful?
- For assessing *diagnostic* probability from causal probability
 \[P(\text{Cause}|\text{Effect}) = \frac{P(\text{Effect}|\text{Cause})P(\text{Cause})}{P(\text{Effect})} \]
- **Example**: let \(M \) be meningitis, \(S \) be stiff neck
 \[P(M|S) = \frac{P(S|M)P(M)}{P(S)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008 \]
 Note: posterior probability of meningitis still very small

Evidence: from Prior to Posterior

- Prior probability \(P(\text{Cavity} = \text{true}) = 0.1 \)
- After we observe \(\text{Toothache} = \text{true} \), we obtain the posterior probability \(P(\text{Cavity} = \text{true}|\text{Toothache} = \text{true}) \)
- This statement is dependent on the fact that \(\text{Toothache} = \text{true} \) is all I know
- Revised probability of toothache if, say, I have a dental examination....
- Some information may be irrelevant, e.g.
 \[P(\text{Cavity} = \text{true}|\text{Toothache} = \text{true}, \text{DiceRoll} = 5) = P(\text{Cavity} = \text{true}|\text{Toothache} = \text{true}) \]

Inference from joint distributions

- Typically, we are interested in the posterior joint distribution of the *query variables* \(X_F \) given specific values \(e \) for the *evidence variables* \(X_E \)
- Remaining variables \(X_R = X \setminus (X_F \cup X_E) \)
- Sum out over \(X_R \)
 \[P(X_F|X_E = e) = \frac{P(X_F, X_E = e)}{P(X_E = e)} = \frac{\sum_r P(X_F, X_R = r, X_E = e)}{\sum_{r,f} P(X_F = f, X_R = r, X_E = e)} \]
Problems with naïve inference:
- Worst-case time complexity $O(d^n)$ where d is the largest arity
- Space complexity $O(d^n)$ to store the joint distribution
- How to find the numbers for $O(d^n)$ entries???

Decision Theory

$\text{DecisionTheory} = \text{ProbabilityTheory} + \text{UtilityTheory}$

- When making actions, an agent will have preferences about different possible outcomes
- Utility theory can be used to represent and reason with preferences
- A rational agent will select the action with the highest expected utility

Summary

Course foci:
- Probability theory as calculus of uncertainty
- Inference in probabilistic graphical models
- Learning probabilistic models form data
- Events, random variables
- Joint, conditional probability
- Bayes rule, evidence
- Decision theory