Hidden Markov Models Dynamical models used in many areas for modelling sequences, including
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Speech recognition
Overview

e Definitions .
e Molecular biology sequences
e Inference Problems

e Recursion formulae

Linguistic sequences (e.g. part-of-speech tagging)

e Viterbi alignment

e Training a HMM

Multi-electrode spike-train analysis
e Linear-Gaussian HMMs (Kalman filtering)

e Reading: Jordan ch 12, Rabiner paper, Roweis paper » Tracking objects through time

Markov Chain
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Hidden Markov Model

P(a,b,c,d) = P(a)P(bla)P(c|b)P(d|c)




A HMM is defined by
e M the number of states

A the state transition matrix

P(y:|g+) the output probability distribution (independent of t)

e 7 the initial transition probabilities

forj #1i

Independence relationships
d q, a, d, d,

¢ Conditioning on ¢; renders ¢;_1 and ¢;4 1 independent, i.e.

I(qi—1, q+1lat)

b I(QSa Qu|qt) foralls <t,u>t

q: is a multinomial variable with components ¢, if g; is in state i then ¢ = 1 and q{ =0

o Letmy, = [[X,[r]% and
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Aqqn = H[aw] B
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o Lety=y07y17~~7yTandq=QO,Q1,~~-7QT

e For any state sequence q

P(y,q) = 74 P(y0lq0) ageq. P(y1lq1) - - - agr 10, P (yrlar)

I(ys,yulqe) forall s < ¢, u >t

the future is independent of the past given the present

Note that conditioning on y; does not yield any conditional
independences

HMM as a dynamical mixture model; choice of state is not independent at
each time frame, but depends on the past



Inference Problems

e HMM as a finite state automaton * P(go...qrly) inferring hidden state given y

e P(g]y) marginal of above
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e Naive approach O(MT+1)

e Efficient O(M2T) algorithm is available by pushing sums through

products

%:P(qtly) =1==0

implies

P(y) =Y ala)B(a)

q:

o Define P(q¢|y) = ~v(qt)

>q e(a)B(ar)

Computing P(qtly)

P(y)
_ P(yo, .-, yelq) P(yet1 - - - yrlg) P(qr)
P(y)
_ P(yo, -t @) P (et1 - - - yrlar)
P(y)
_ a(g)B(a)
P(y)

The alphas and betas can be calculated recursively.

Recursion formulae

e Alpha
alg) =Y ala)agq, Pyl a1)
qr
Initialization
a(gqo0) = P(yo0,90) = P(yolq0) P(q0) = P(yolq0) 7
e Beta

B(a) =Y B(4+1) g P(Wet1]dr+1)

Qe+

Initialization: 8(qr) is the vector of ones as

> ald)Blar) =Y aldr) =Y Pyo,-- - yr.ar) = P(y)

7 [

Each step is O(M?)



Viterbi alignment
Find the best state sequence ¢3qj . . . ¢} that maximizes P(qly)

Define

6(i)) = max P(qgo,q91,---9t = 1,90 .-
()= max P(go,q1,---at=1Y0--yt)

i.e. 8;(¢2) is the best score along a single path up to time ¢ which account for
the first ¢t observations and ends in state S;.

There is a recursive formula for delta similar to the alpha recursion, except
that a max rather than sum operation is used

For further details see, for example, L. Rabiner, Proc. IEEE 77(2) 1989 pp
257-285

Training a HMM

Use the EM algorithm to estimate 7, A and n, the parameters of P(y¢|q:). Let
6= (m A,n)

If we knew the “true” state sequence, parameter estimation would be easy.
The trick is to use the probability distribution over state paths to weight these
estimates
7 — v(ab)
=6 £(dialyy)
=6 (@)

a,-j —

Calculating P(qt, q¢1-11y)

&(at; qr+1) = P(ats @t1ly)

_ Pl av1,y)
P(y)

_ P(ylar gi+1) P(gi41]90) P(ar)
P(y)

= P(yo, .., @) P(ye+1lqi+1) %

Pito. .. yrla+1) P(qit1la) Par)
P(y)

— a(gt) P(yet+1l9i+1) 8(qi+1) Gqq.
P(y)

If the output is a multinomial distribution with P(y! = 1|¢}) = n;; and
Sryt =1

Fiii — E;:o ’Y(%Ze)yg
ij >
ST ov(d)

For HMMs these are known as the Baum-Welch equations



Example: Harmonizing Chorales in the Style of J S Linear-Gaussian HMMs
Bach

Moray Allan and Chris Williams (NIPS 2004) o Filtering problem known as Kalman filtering
http://wuw.tardis.ed.ac.uk/ moray/harmony/, online demo at
http://www.anc.inf.ed.ac.uk/demos/hmmbach/

Visible states are the melody (quarter notes) ¢ HMM with continuous state-space and observations

Hidden states are the harmony (which chord)

e Trained using labelled melody/harmony data (no need for EM)

Task: find Viterbi alignment for harmony given melody (or sample from
P(harmony|melody).)

Actually uses HMMs for three subtasks: harmonic skeleton, chord skeleton,
ornamentation

e Observation model
X yi=Cxi+ v
where v ~ N (0, R) is Gaussian noise, i.e.

P(yt[xt) ~ N(Cxt, R)

o Initialization
P(x0) ~ N(0,%0)

e Dynamical model

X1 = Axy + Gwy
where w; ~ N (0, Q) is Gaussian noise, i.e.

P(x11|xt) ~ N(Ax;, GQGT)



Inference Problem — filtering

e As whole model is Gaussian, only need to compute means and variances
P(xtlyo, -, yt) ~ N (X, Pye)
% = Elxlyo, - -, yi]
Py = El(xt — it\t)(xé - }A(t\t)T|YO’ oyl

e Recursive update split into two parts

Time update
P(xlyo,---,yt) — P(X+1lyo, - -, ¥t)

o Measurement update

P(x¢t1lyo, .- yt) = P(Xx1lyo, - Yo, Y1)

Simple example

Tit41 — Tt + wy
w; ~ N(0,1)
Yt = Tt + vt
v~ N(0,1)
P(z0) ~ N(0,02)

In the limit 62 — oo we find
5y2 + 2y1 + yo

5522:
‘ 8

e Notice how later data has more weight
e Compare z;+1 = x¢ (S0 that w; has zero variance); then

. _YPtyuyity
T ="""75

e Time update

X1 = Axy + Gwy
thus

X1t = Axm

Pri1p = AP AT + GQGT

e Measurement update (like posterior in Factor Analysis)

Rip1p+1 = e + K1 (i1 — CReqr)

P41 = Py — Ki1C Py
where
Kiy1 = Py, C"(CP41uCT + R) !

K, +1 is known as the Kalman gain matrix

Applications

Much as a coffee filter serves to keep undesirable grounds out of
your morning mug, the Kalman filter is designed to strip unwanted
noise out of a stream of data. Barry Cipra, SIAM News 26(5) 1993

Navigational and guidance systems
Radar tracking
Sonar ranging

Satellite orbit determination



Extensions

Dealing with non-linearity

e The Extended Kalman Filter (EKF)
If y: = f(x¢) + v¢ where f is a non-linear function, can linearize f, e.g.
around Xy|; 1. Works for weak non-linearities

e For very non-linear problems use sampling methods (known as particle
filters). Example, work of Blake and Isard on tracking, see
http://www.robots.ox.ac.uk/~vdg/dynamics.html

It is possible to train KFs using a forward-backward algorithm



