
Hidden Markov Models
Chris Williams, School of Informatics, University of Edinburgh

Overview

• Definitions

• Inference Problems

• Recursion formulae

• Viterbi alignment

• Training a HMM

• Linear-Gaussian HMMs (Kalman filtering)

• Reading: Jordan ch 12, Rabiner paper, Roweis paper

Dynamical models used in many areas for modelling sequences, including

• Speech recognition

• Molecular biology sequences

• Linguistic sequences (e.g. part-of-speech tagging)

• Multi-electrode spike-train analysis

• Tracking objects through time

Markov Chain

a b c d

P (a, b, c, d) = P (a)P (b|a)P (c|b)P (d|c)

Hidden Markov Model

A A A
q q q q

yy y y
1 2 3

3210

0

π 0

y

q

Τ

Τ

. .

A HMM is defined by

• M the number of states

• A the state transition matrix

• P(yt|qt) the output probability distribution (independent of t)

• π the initial transition probabilities

• qt is a multinomial variable with components qi
t, if qt is in state i then qi

t = 1 and q
j
t = 0

for j 6= i

• Let πq0
=

∏M
i=1[πi]

qi
0 and

aqtqt+1
=

∏

i,j

[aij]
qi

tq
j

t+1

• Let y = y0, y1, . . . , yT and q = q0, q1, . . . , qT

• For any state sequence q

P(y,q) = πq0
P(y0|q0)aq0q1

P(y1|q1) . . . aqT−1qT
P(yT |qT)

Independence relationships
A A A

q q q q

yy y y
1 2 3

3210

0

π 0

y

q

Τ

Τ

. .

• Conditioning on qt renders qt−1 and qt+1 independent, i.e.
I(qt−1, qt+1|qt)

• I(qs, qu|qt) for all s < t, u > t

• I(ys, yu|qt) for all s ≤ t, u > t

• the future is independent of the past given the present

• Note that conditioning on yt does not yield any conditional
independences

• HMM as a dynamical mixture model; choice of state is not independent at
each time frame, but depends on the past

• HMM as a finite state automaton

s

s

s

P(y|s

P(y|s

P(y|s

)

)

)

a

a

a
21

1
2

3

22

32

1

2

3

Inference Problems
• P(q0 . . . qT |y) inferring hidden state given y

• P(qt|y) marginal of above

• P(qt|y0, . . . , yt) filtering

• P(qt|y0, . . . , ys) t > s, prediction

• P(qt|y0, . . . , yu) t < u, smoothing

• P(y0, . . . , yT) likelihood calculation

• Find sequence q∗0q
∗
1 . . . q∗T that maximizes P(q|y) [Viterbi alignment]

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �

� �� �� �

� �� �� �

� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �

��
�	

�

� � � � �� � � � �� � � � �� � � � �

t

t

t

filtering

smoothing

prediction

denotes the extent of data
available

P(y0, . . . , yT) =
∑

q0

∑

q1

. . .
∑

qT

π(q0)

T−1∏

t=0

aqtqt+1

T∏

t=0

P(yt|qt)

t=0 t=1 t=2 t=3

• Naive approach O(MT+1)

• Efficient O(M2T) algorithm is available by pushing sums through
products

Computing P (qt|y)

P(qt|y) =
P(y|qt)P(qt)

P(y)

=
P(y0, . . . , yt|qt)P(yt+1 . . . yT |qt)P(qt)

P(y)

=
P(y0, . . . , yt, qt)P(yt+1 . . . yT |qt)

P(y)

≡
α(qt)β(qt)

P(y)

The alphas and betas can be calculated recursively.

∑

qt

P(qt|y) = 1 =

∑
qt

α(qt)β(qt)

P(y)

implies
P(y) =

∑

qt

α(qt)β(qt)

• Define P(qt|y) = γ(qt)

Recursion formulae
• Alpha

α(qt+1) =
∑

qt

α(qt)aqtqt+1
P(yt+1|qt+1)

Initialization
α(q0) = P(y0, q0) = P(y0|q0)P(q0) = P(y0|q0)πq0

• Beta
β(qt) =

∑

qt+1

β(qt+1)aqtqt+1
P(yt+1|qt+1)

Initialization: β(qT) is the vector of ones as
∑

i

α(qi
T)β(qi

T) =
∑

i

α(qi
T) =

∑

i

P(y0, . . . , yT , qi
T) = P(y)

Each step is O(M2)

Viterbi alignment
Find the best state sequence q∗0q∗1 . . . q∗T that maximizes P (q|y)

Define
δt(i) = max

q0,q1,...qt−1
P (q0, q1, . . . qt = i, y0 . . . yt)

i.e. δt(i) is the best score along a single path up to time t which account for
the first t observations and ends in state Si.

There is a recursive formula for delta similar to the alpha recursion, except
that a max rather than sum operation is used

For further details see, for example, L. Rabiner, Proc. IEEE 77(2) 1989 pp
257-285

Calculating P (qt, qt+1|y)

ξ(qt, qt+1) ≡ P(qt, qt+1|y)

=
P(qt, qt+1,y)

P(y)

=
P(y|qt, qt+1)P(qt+1|qt)P(qt)

P(y)

= P(y0, . . . , yt|qt)P(yt+1|qt+1)×

P(yt+2 . . . yT |qt+1)P(qt+1|qt)P(qt)

P(y)

=
α(qt)P(yt+1|qt+1)β(qt+1)aqtqt+1

P(y)

Training a HMM

Use the EM algorithm to estimate π, A and η, the parameters of P (yt|qt). Let
θ = (π, A, η)

If we knew the “true” state sequence, parameter estimation would be easy.
The trick is to use the probability distribution over state paths to weight these
estimates

π̂i← γ(qi
0)

âij ←

∑T−1
t=0 ξ(qi

tq
j
t+1)

∑T−1
t=0 γ(qi

t)

If the output is a multinomial distribution with P (y
j
t = 1|qi

t) = ηij and
∑

k yk
t = 1

η̂ij ←

∑T
t=0 γ(qi

t)y
j
t∑T

t=0 γ(qi
t)

For HMMs these are known as the Baum-Welch equations

Example: Harmonizing Chorales in the Style of J S
Bach

• Moray Allan and Chris Williams (NIPS 2004)
http://www.tardis.ed.ac.uk/~moray/harmony/, online demo at
http://www.anc.inf.ed.ac.uk/demos/hmmbach/

• Visible states are the melody (quarter notes)

• Hidden states are the harmony (which chord)

• Trained using labelled melody/harmony data (no need for EM)

• Task: find Viterbi alignment for harmony given melody (or sample from
P(harmony|melody).)

• Actually uses HMMs for three subtasks: harmonic skeleton, chord skeleton,
ornamentation

Linear-Gaussian HMMs

• Filtering problem known as Kalman filtering

• HMM with continuous state-space and observations

A A A

yy y y
1 2 3

3210

0
y

Τ

Τ

. .
x x x x x

C C C C C

Σ0

• Dynamical model
xt+1 = Axt + Gwt

where wt ∼ N(0, Q) is Gaussian noise, i.e.

P(xt+1|xt) ∼ N(Axt, GQGT)

• Observation model
yt = Cxt + vt

where vt ∼ N(0, R) is Gaussian noise, i.e.

P(yt|xt) ∼ N(Cxt, R)

• Initialization
P(x0) ∼ N(0,Σ0)

Inference Problem – filtering
• As whole model is Gaussian, only need to compute means and variances

P(xt|y0, . . . ,yt) ∼ N(x̂t|t, Pt|t)

x̂t|t = E[xt|y0, . . . ,yt]

Pt|t = E[(xt − x̂t|t)(xt − x̂t|t)
T |y0, . . . ,yt]

• Recursive update split into two parts

• Time update
P(xt|y0, . . . ,yt)→ P(xt+1|y0, . . . ,yt)

• Measurement update
P(xt+1|y0, . . . ,yt)→ P(xt+1|y0, . . . ,yt,yt+1)

• Time update
xt+1 = Axt + Gwt

thus
x̂t+1|t = Ax̂t|t

Pt+1|t = APt|tA
T + GQGT

• Measurement update (like posterior in Factor Analysis)

x̂t+1|t+1 = x̂t+1|t + Kt+1(yt+1 − Cx̂t+1|t)

Pt+1|t+1 = Pt+1|t −Kt+1CPt+1|t

where
Kt+1 = Pt+1|tC

T(CPt+1|tC
T + R)−1

Kt+1 is known as the Kalman gain matrix

Simple example
xt+1 = xt + wt

wt ∼ N(0,1)

yt = xt + vt

vt ∼ N(0,1)

P(x0) ∼ N(0, σ2)

In the limit σ2 →∞ we find

x̂2|2 =
5y2 + 2y1 + y0

8

• Notice how later data has more weight

• Compare xt+1 = xt (so that wt has zero variance); then

x̂2|2 =
y2 + y1 + y0

3

Applications

Much as a coffee filter serves to keep undesirable grounds out of
your morning mug, the Kalman filter is designed to strip unwanted
noise out of a stream of data. Barry Cipra, SIAM News 26(5) 1993

• Navigational and guidance systems

• Radar tracking

• Sonar ranging

• Satellite orbit determination

Extensions
Dealing with non-linearity

• The Extended Kalman Filter (EKF)
If yt = f(xt) + vt where f is a non-linear function, can linearize f , e.g.
around x̂t|t−1. Works for weak non-linearities

• For very non-linear problems use sampling methods (known as particle
filters). Example, work of Blake and Isard on tracking, see
http://www.robots.ox.ac.uk/~vdg/dynamics.html

It is possible to train KFs using a forward-backward algorithm

