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Reading: Bishop §13.1, 13.2 (but not 13.2.3, 13.2.4,
13.2.5), Rabiner paper



Dynamical models used in many areas for modelling
sequences, including

@ Speech recognition

@ Molecular biology sequences

@ Linguistic sequences (e.g. part-of-speech tagging)
@ Multi-electrode spike-train analysis

@ Tracking objects through time
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p(a, b, ¢, d) = p(a)p(bla)p(c|b)p(d]|c)

Hidden Markov Model



A HMM is defined by
@ K the number of states
@ A the state transition matrix
@ p(Xn|zn) the output probability distribution (independent of
n)
@  the initial transition probabilities

@ z,is a multinomial variable with components z,;, if z, is in
state i then z,; =1 and z,; =0 for j # i



o Let s, =[5, [r]? and
8z,2, 1 = H[aij]zni Zni
ij

o LetX=x4,....,xyandZ =24,...,2zy
@ For any state sequence Z

P(X,Z) = 7z, p(X1]21)8z,2,0(X2|Z2) . . . Azy_,zyP(XN|ZN)



Independence relationships

X1 Xz X3 XN

@ Conditioning on z, renders z,,_1 and z,, 1 independent, i.e.
I(zh—1,2n41|2n)
@ /(zs,zy|lzp)foralls<n,u>n



@ /(Xs,Xylzp) foralls<n,u>n

@ the future is independent of the past given the present

@ Note that conditioning on x, does not yield any conditional
independences

@ HMM as a dynamical mixture model; choice of state is not
independent at each time frame, but depends on the past



e HMM as a finite state automaton

P(xls) _



Inference Problems

@ p(zy...2zy|X) inferring hidden state given X

@ p(z,|X) marginal of above

@ p(zy|X1,...,Xy) filtering

@ p(zp|Xy,...,Xs) n> s, prediction
@ p(zn|X4,...,X,) n < u, smoothing
@ p(Xq,...,Xn) likelihood calculation

@ Find sequence zj ...z}, that maximizes p(Z|X) [Viterbi
alignment]
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filtering
= 3.
smoothing
ESSSNNSS S =
prediction t
= 4 ,
t

denotes the extent of data
available
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O
t=0

@ Naive approach O(KN)

e Efficient O(K2N) algorithm is available by pushing sums
through products
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Computing p(z,|X)

pl ) = Pz
_ p(Xy,...,Xn|Zn)P(Xnt1 - - - XN|Zn)P(Zn)
a p(X)
_ P(X1, ..., Xn,2n)P(Xpsv - .- XN|Zn)
p(X)
_ a(zn)5(zn)
— p(X)

The alphas and betas can be calculated recursively.
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implies

@ Define p(z,|X) = ~(z5)
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Recursion formulae

@ Alpha
a(Zpy1) = Z (2n)8z,z,,,P(Xn+1|2Zn+1)
Zp
Initialization
o(z1) = p(X1,21) = p(X1|z1)p(z1) = p(X1|Z1) e,
@ Beta

ﬂ(zn) - Z ﬁ(zn+1 )aznzn+1p(xn+1 |zn+1)

Zni1

Initialization: 5(zx) is the vector of ones as

> alzm)B(2zn) = Z o(Zni) ZP X1,..., XN, Zy = i) = p(X)

i

Each step is O(K?)
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Viterbi alignment

Find the best state sequence 27z} . .. z}, that maximizes p(Z|X)
Define

on(i) = z1rp‘:;13<_1p(z1 oo Zn=1,X1...Xp)

i.e. dp(/) is the best score along a single path up to time n which
account for the first n observations and ends in state S,.

@ There is a recursive formula for the ds similar to the
a-recursion, except that a max rather than sum operation
is used

@ For further details see, for example, L. Rabiner, Proc. IEEE
77(2) 1989 pp 257-285
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Calculating p(z,, Zn11|X)

&(zn,Znv1) = P(2n, Zn41|X)
P(Zn, Zn11,X)
p(X)
_ P(X]Zn, Zn+1)P(Zn+1]Zn)P(Zn)
- p(X)
= P(X1, .-, Xn|Zn)P(Xn11]Zni1) ¥
P(Xn-2 - - - Xn|Zn11)P(Zn+1]20)P(Zn)
p(X)
Oé(Zn),D(Xn+1 ‘Zn+1 )6(zn+1 )aznz,m
B p(X)
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Training a HMM

@ Use the EM algorithm to estimate =, A and ), the
parameters of p(Xn|z,). Let 6 = (7, A7)

@ If we knew the “true” state sequence, parameter estimation
would be easy. The trick is to use the probability
distribution over state paths to weight these estimates

7 — v(21))

N—1
5. >n—1 §(Zni Zn+1,/)
ajj — N—1
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If the output is a multinomial distribution with
p(Xpj = 1|zpi = 1) = njand > Xpk = 1

N
B — >_n=17(Zni)Xnj
U] N
> n=17(Zni)

For HMMs these are known as the Baum-Welch equations
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Example: Harmonizing Chorales in the Style of J S
Bach

Moray Allan and Chris Williams (NIPS 2004)
http://www.tardis.ed.ac.uk/~moray/harmony/,
online demo at
http://www.anc.inf.ed.ac.uk/demos/hmmbach/

Visible states are the melody (quarter notes)
Hidden states are the harmony (which chord)
Trained using labelled melody/harmony data (no need for EM)

Task: find Viterbi alignment for harmony given melody (or
sample from p(harmony|melody).)

Actually uses HMMs for three subtasks: harmonic skeleton,
chord skeleton, ornamentation
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