Overview

Hidden Markov Models

Chris Williams

School of Informatics, University of Edinburgh

November 2010

DefinitionsInference P

- Inference Problems
- Recursion formulae
- Viterbi alignment
- Training a HMM
- Reading: Bishop §13.1, 13.2 (but not 13.2.3, 13.2.4, 13.2.5), Rabiner paper

1/20 2/20

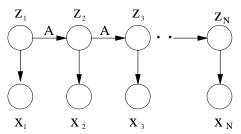
Dynamical models used in many areas for modelling sequences, including

- Speech recognition
- Molecular biology sequences
- Linguistic sequences (e.g. part-of-speech tagging)
- Multi-electrode spike-train analysis
- Tracking objects through time

Markov Chain

p(a,b,c,d) = p(a)p(b|a)p(c|b)p(d|c)

Hidden Markov Model



A HMM is defined by

K the number of states

A the state transition matrix

• $p(\mathbf{x}_n|\mathbf{z}_n)$ the output probability distribution (independent of n)

 \bullet π the initial transition probabilities

• \mathbf{z}_n is a multinomial variable with components z_{ni} , if \mathbf{z}_n is in state i then $z_{ni} = 1$ and $z_{nj} = 0$ for $j \neq i$

• Let $\pi_{\mathbf{z}_1} = \prod_{i=1}^K [\pi_i]^{z_{1i}}$ and

$$a_{\mathbf{z}_n\mathbf{z}_{n+1}} = \prod_{i,j} [a_{ij}]^{z_{ni} z_{n+1,j}}$$

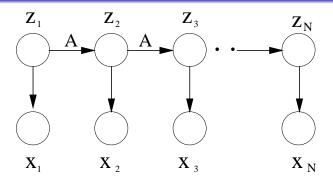
• Let $\mathbf{X} = \mathbf{x}_1, \dots, \mathbf{x}_N$ and $\mathbf{Z} = \mathbf{z}_1, \dots, \mathbf{z}_N$

For any state sequence Z

$$p(\mathbf{X}, \mathbf{Z}) = \pi_{\mathbf{z}_1} p(\mathbf{x}_1 | \mathbf{z}_1) a_{\mathbf{z}_1 \mathbf{z}_2} p(\mathbf{x}_2 | \mathbf{z}_2) \dots a_{\mathbf{z}_{N-1} \mathbf{z}_N} p(\mathbf{x}_N | \mathbf{z}_N)$$

5/20 6/20

Independence relationships



• Conditioning on \mathbf{z}_n renders \mathbf{z}_{n-1} and \mathbf{z}_{n+1} independent, i.e. $I(\mathbf{z}_{n-1}, \mathbf{z}_{n+1} | \mathbf{z}_n)$

• $I(\mathbf{z}_s, \mathbf{z}_u | \mathbf{z}_n)$ for all s < n, u > n

• $I(\mathbf{x}_s, \mathbf{x}_u | \mathbf{z}_n)$ for all $s \leq n, u > n$

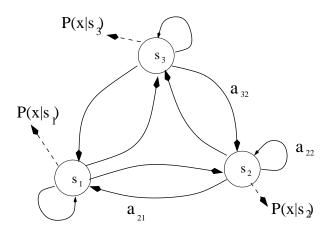
• the future is independent of the past given the present

 Note that conditioning on x_n does not yield any conditional independences

 HMM as a dynamical mixture model; choice of state is not independent at each time frame, but depends on the past

7/20 8/20

• HMM as a finite state automaton

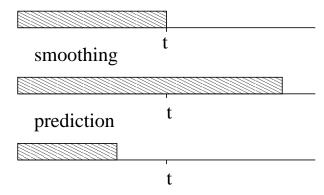


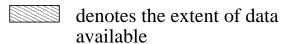
Inference Problems

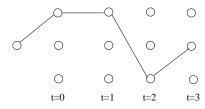
- $p(\mathbf{z}_1 \dots \mathbf{z}_N | \mathbf{X})$ inferring hidden state given \mathbf{X}
- $p(\mathbf{z}_n|\mathbf{X})$ marginal of above
- $p(\mathbf{z}_n|\mathbf{x}_1,\ldots,\mathbf{x}_n)$ filtering
- $p(\mathbf{z}_n|\mathbf{x}_1,\ldots,\mathbf{x}_s)$ n>s, prediction
- $p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_u)$ n < u, smoothing
- $p(\mathbf{x}_1, \dots, \mathbf{x}_N)$ likelihood calculation
- Find sequence $\mathbf{z}_1^* \dots \mathbf{z}_N^*$ that maximizes $p(\mathbf{Z}|\mathbf{X})$ [Viterbi alignment]

9/20 10/20

filtering







- Naive approach $O(K^N)$
- Efficient $O(K^2N)$ algorithm is available by pushing sums through products

11/20 12/20

Computing $p(\mathbf{z}_n|\mathbf{X})$

$$\rho(\mathbf{z}_{n}|\mathbf{X}) = \frac{\rho(\mathbf{X}|\mathbf{z}_{n})\rho(\mathbf{z}_{n})}{\rho(\mathbf{X})} \\
= \frac{\rho(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}|\mathbf{z}_{n})\rho(\mathbf{x}_{n+1} \dots \mathbf{x}_{N}|\mathbf{z}_{n})\rho(\mathbf{z}_{n})}{\rho(\mathbf{X})} \\
= \frac{\rho(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{z}_{n})\rho(\mathbf{x}_{n+1} \dots \mathbf{x}_{N}|\mathbf{z}_{n})}{\rho(\mathbf{X})} \\
\equiv \frac{\alpha(\mathbf{z}_{n})\beta(\mathbf{z}_{n})}{\rho(\mathbf{X})}$$

$$\sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{X}) = 1 = \frac{\sum_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n)}{p(\mathbf{X})}$$

implies

$$p(\mathbf{X}) = \sum_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n)$$

• Define $p(\mathbf{z}_n|\mathbf{X}) = \gamma(\mathbf{z}_n)$

The alphas and betas can be calculated recursively.

13/20 14/20

Recursion formulae

Alpha

$$\alpha(\mathbf{z}_{n+1}) = \sum_{\mathbf{z}} \alpha(\mathbf{z}_n) a_{\mathbf{z}_n \mathbf{z}_{n+1}} p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1})$$

Initialization

$$\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{x}_1 | \mathbf{z}_1) p(\mathbf{z}_1) = p(\mathbf{x}_1 | \mathbf{z}_1) \pi_{\mathbf{z}_1}$$

Beta

$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) a_{\mathbf{z}_n \mathbf{z}_{n+1}} p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1})$$

Initialization: $\beta(\mathbf{z}_N)$ is the vector of ones as

$$\sum_{i} \alpha(z_{Ni})\beta(z_{Ni}) = \sum_{i} \alpha(z_{Ni}) = \sum_{i} \rho(\mathbf{x}_{1}, \dots, \mathbf{x}_{N}, \mathbf{z}_{N} = i) = \rho(\mathbf{X})$$

Each step is $O(K^2)$

Viterbi alignment

Find the best state sequence $\mathbf{z}_1^*\mathbf{z}_2^* \dots \mathbf{z}_N^*$ that maximizes $p(\mathbf{Z}|\mathbf{X})$ Define

$$\delta_n(i) = \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_1, \dots, \mathbf{z}_n = i, \mathbf{x}_1 \dots \mathbf{x}_n)$$

i.e. $\delta_n(i)$ is the best score along a single path up to time n which account for the first n observations and ends in state S_i .

- There is a recursive formula for the δ s similar to the α -recursion, except that a max rather than sum operation is used
- For further details see, for example, L. Rabiner, Proc. IEEE 77(2) 1989 pp 257-285

Calculating $p(\mathbf{z}_n, \mathbf{z}_{n+1}|\mathbf{X})$

$$\begin{split} \xi(\mathbf{z}_{n}, \mathbf{z}_{n+1}) &\equiv \rho(\mathbf{z}_{n}, \mathbf{z}_{n+1} | \mathbf{X}) \\ &= \frac{\rho(\mathbf{z}_{n}, \mathbf{z}_{n+1}, \mathbf{X})}{\rho(\mathbf{X})} \\ &= \frac{\rho(\mathbf{X} | \mathbf{z}_{n}, \mathbf{z}_{n+1}) \rho(\mathbf{z}_{n+1} | \mathbf{z}_{n}) \rho(\mathbf{z}_{n})}{\rho(\mathbf{X})} \\ &= \rho(\mathbf{x}_{1}, \dots, \mathbf{x}_{n} | \mathbf{z}_{n}) \rho(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) \times \\ &\qquad \qquad \frac{\rho(\mathbf{x}_{n+2} \dots \mathbf{x}_{N} | \mathbf{z}_{n+1}) \rho(\mathbf{z}_{n+1} | \mathbf{z}_{n}) \rho(\mathbf{z}_{n})}{\rho(\mathbf{X})} \\ &= \frac{\alpha(\mathbf{z}_{n}) \rho(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) \beta(\mathbf{z}_{n+1}) a_{\mathbf{z}_{n} \mathbf{z}_{n+1}}}{\rho(\mathbf{X})} \end{split}$$

Training a HMM

- Use the EM algorithm to estimate π , A and η , the parameters of $p(\mathbf{x}_n|\mathbf{z}_n)$. Let $\theta = (\pi, A, \eta)$
- If we knew the "true" state sequence, parameter estimation would be easy. The trick is to use the probability distribution over state paths to weight these estimates

$$\hat{a}_{ij} \leftarrow \gamma(z_{1i})$$

$$\hat{a}_{ij} \leftarrow \frac{\sum_{n=1}^{N-1} \xi(z_{ni} \ z_{n+1,j})}{\sum_{n=1}^{N-1} \gamma(z_{ni})}$$

17/20 18/20

If the output is a multinomial distribution with $p(x_{nj} = 1 | z_{ni} = 1) = \eta_{ij}$ and $\sum_k x_{nk} = 1$

$$\hat{\eta}_{ij} \leftarrow \frac{\sum_{n=1}^{N} \gamma(z_{ni}) x_{nj}}{\sum_{n=1}^{N} \gamma(z_{ni})}$$

For HMMs these are known as the Baum-Welch equations

Example: Harmonizing Chorales in the Style of J S Bach

• Moray Allan and Chris Williams (NIPS 2004) http://www.tardis.ed.ac.uk/~moray/harmony/, online demo at http://www.anc.inf.ed.ac.uk/demos/hmmbach/

- Visible states are the melody (quarter notes)
- Hidden states are the harmony (which chord)
- Trained using labelled melody/harmony data (no need for EM)
- Task: find Viterbi alignment for harmony given melody (or sample from p(harmony|melody).)
- Actually uses HMMs for three subtasks: harmonic skeleton, chord skeleton, ornamentation

19/20 20/20