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Overview

• Bayesian Prediction

• Gaussian Process Priors over Functions

• GP regression

• GP classification

Bayesian prediction

• Define a prior over functions

• Observe data, obtain a posterior distribution over functions

P (f |D) ∝ P (f)P (D|f)

posterior ∝ prior × likelihood

• Make predictions by averaging predictions over the posterior P (f |D)

• Averaging mitigates overfitting

Bayesian Linear Regression

f(x) =
∑

i

wiφi(x) w ∼ N(0,Σ)

Samples from the prior



Gaussian Processes: Priors over functions
• For a stochastic process f(x), mean function is

µ(x) = E[f(x)].

Assume µ(x) ≡ 0 ∀x

• Covariance function
k(x,x′) = E[f(x)f(x′)].

• Forget those weights! We should be thinking of defining priors over functions, not
weights.

• Priors over function-space can be defined directly by choosing a covariance function,
e.g.

k(x,x′) = exp(−w|x − x′|)

• Gaussian processes are stochastic processes defined by their mean and covariance
functions.

Examples of GPs

• σ2
0 + σ2

1xx′

• exp−|x − x′|

• exp−(x − x′)2

Connection to feature space
A Gaussian process prior over functions can be thought of as a Gaussian prior on the
coefficients w ∼ N(0,Λ) where

f(x) =

NF
∑

i=1

wiφi(x) = w.Φ(x)

Φ(x) =









φ1(x)
φ2(x)

...
φNF

(x)









In many interesting cases, NF = ∞

Choose Φ(·) as eigenfunctions of the kernel k(x,x′) wrt p(x) (Mercer)
∫

k(x,y)p(x)φi(x) dx = λiφi(y)

Gaussian process regression

Dataset D = (xi, yi)
n
i=1, Gaussian likelihood p(yi|fi) ∼ N(0, σ2)

f̄(x) =
n

∑

i=1

αik(x, xi)

where

α = (K + σ2I)−1y

var(x) = k(x, x) − kT (x)(K + σ2I)−1k(x)

in time O(n3), with k(x) = (k(x, x1), . . . ,k(x, xn))T



After 1 observation:

After 2 observations:
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• Approximation methods can reduce O(n3) to O(nm2) for m � n

• GP regression is competitive with other kernel methods (e.g. SVMs)

• Can use non-Gaussian likelihoods (e.g. Student-t)

Adapting kernel parameters

k(xi,xj) = v0 exp−
1

2

d
∑

l=1

wl(x
i
l − x

j
l )

2

w1 = 5.0 w2 = 5.0 w1 = 5.0 w2 = 0.5

• For GPs, the marginal likelihood (aka Bayesian evidence) logP (y|θ) can
be optimized wrt the kernel parameters θ = (v0,w)

• For GP regression logP (y|θ) can be computed exactly

logP (y|θ) == −
1

2
log |K + σ2I| −

1

2
yT (K + σ2I)−1y −

n

2
log 2π



Regularization

• f̄(x) is the (functional) minimum of

J[f ] =
1

2σ2

n
∑

i=1

(yi − f(xi))
2 +

1

2
‖f‖2H

(1st term = − log-likelihood, 2nd term = − log-prior)

• However, the regularization framework does not yield predictive variance
or marginal likelihood

Previous work
• Wiener-Kolmogorov prediction theory (1940’s)

• Splines (Kimeldorf and Wahba, 1971; Wahba 1990)

• ARMA models for time-series

• Kriging in geostatistics (for 2-d or 3-d spaces)

• Regularization networks (Poggio and Girosi, 1989, 1990)

• Design and Analysis of Computer Experiments (Sacks et al, 1989)

• Infinite neural networks (Neal, 1995)

GP prediction for classification problems
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Squash through logistic (or erf) function

• Likelihood

− logP (yi|fi) = log(1 + e−yifi)

• Integrals can’t be done analytically

– Find maximum a posteriori value of P (f |y) (Williams and Barber,
1997)

– Expectation-Propagation (Minka, 2001; Opper and Winther, 2000)

– MCMC methods (Neal, 1997)



MAP Gaussian process classification
To obtain the MAP approximation to the GPC solution, we find f̂ that maximizes the convex
function

Ψ(y) = −

n
∑

i=1

log(1 + e−yifi) −
1

2
fTK−1f + c

The optimization is carried out using the Newton-Raphson iteration

fnew = K(I + WK)−1(W f + (t − π))

where W = diag(π1(1 − π1), .., πn(1 − πn)) and πi = σ(f̂i). Basic complexity is O(n3)

For a test point x∗ we compute f̄(x∗) and the variance, and make the prediction as

P(class 1|x∗,D) =

∫

σ(f∗)p(f∗|y)df∗

SVMs

1-norm soft margin classifier has the form

f(x) =
n

∑

i=1

yiα
∗
i k(x, xi) + w∗

0

where yi ∈ {−1,1} and α
∗ optimizes the quadratic form

Q(α) =
n

∑

i=1

αi −
1

2

n
∑

i,j=1

titjαiαjk(xi, xj)

subject to the constraints
n

∑

i=1

yiαi = 0

C ≥ αi ≥ 0, i = 1, . . . , n

This is a quadratic programming problem. Can be solved in many ways, e.g.
with interior point methods, or special purpose algorithms such as SMO.

Basic complexity is O(n3).

• Define gσ(z) = log(1 + e−z)

• SVM classifier is similar to GP classifier, but with gσ replaced by
gSV M(z) = [1 − z]+ (Wahba, 1999)
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log(1 + exp(−z))
max(1−z, 0)

• Note that the MAP solution using gσ solution is not sparse, but gives a
probability output


