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Bayesian prediction

Define a prior over functions

Observe data, obtain a posterior distribution over functions

P(f|D) o< P(f)P(D|f)

posterior o« prior x likelihood

Make predictions by averaging predictions over the posterior P(f|D)

Averaging mitigates overfitting

Overview

Bayesian Prediction

Gaussian Process Priors over Functions

GP regression

GP classification

Bayesian Linear Regression
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Gaussian Processes: Priors over functions Examples of GPs

e For a stochastic process f(x), mean function is

p(x) = E[f(x)]. ° 0(2) + O'%SL‘QZ/
Assume p(x) = 0 Vx

e Covariance function
k(x,x") = E[f(x) f(x)].
. o . _ . e exp —|z — 7|
e Forget those weights! We should be thinking of defining priors over functions, not
weights.

e Priors over function-space can be defined directly by choosing a covariance function,

e.g.
k(x,x) = exp(—w|x — x'|) o exp —(z — 2')?
e Gaussian processes are stochastic processes defined by their mean and covariance
functions.
Connection to feature space Gaussian process regression
A Ga_ussian process prior over functions can be thought of as a Gaussian prior on the
coefficients w ~ N (0, A) where § Dataset D = (x;,y;)"_, Gaussian likelihood p(y;|f;) ~ N(0,52)
FG) =Y wii(x) = w.d(x) _ n
= Fx) = > aik(x,x;)
=1
é1 gxg where
_ | ¢
e = a= (K +o20)" 1y
#n, (%)
In many interesting cases, Ny = oo
Choose @ (-) as eigenfunctions of the kernel k(x,x") wrt p(x) (Mercer) var(x) = k(x,x) — kT(X)(K + 021)71k(x)

[ G0 dx = M) in ime O(n3), with k(x) = (k(x, x1), - . ., k(x, xn))T



¢ Approximation methods can reduce O(n3) to O(nm?2) form < n

e GP regression is competitive with other kernel methods (e.g. SVMs)

After 1 observation:
e Can use non-Gaussian likelihoods (e.g. Student-t)

o

After 2 observations:

Adapting kernel parameters e For GPs, the marginal likelihood (aka Bayesian evidence) log P(y|0) can
be optimized wrt the kernel parameters 6§ = (vg, w)
d
e For GP regression log P(y|6) can be computed exactly

S 1 ) .
E(x',x7) = vgexp -5 > wyx) — a:{)2
=1
1 1
log P(y|0) == —7 log |K + 02| — 5yT(K +o020) "1y - glog o
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Regularization

e f(x) is the (functional) minimum of
1 2 1
T = 5,2 2 = S0+ I

(1st term = — log-likelihood, 2nd term = — log-prior)

e However, the regularization framework does not yield predictive variance
or marginal likelihood

GP prediction for classification problems
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Squash through logistic (or erf) function

Previous work
e Wiener-Kolmogorov prediction theory (1940’s)
e Splines (Kimeldorf and Wahba, 1971; Wahba 1990)
¢ ARMA models for time-series
e Kriging in geostatistics (for 2-d or 3-d spaces)
e Regularization networks (Poggio and Girosi, 1989, 1990)
e Design and Analysis of Computer Experiments (Sacks et al, 1989)

e Infinite neural networks (Neal, 1995)

e Likelihood
—1log P(y;| f;) = log(1 + e ¥ifi)

e Integrals can’t be done analytically

— Find maximum a posteriori value of P(f|y) (Williams and Barber,
1997)

— Expectation-Propagation (Minka, 2001; Opper and Winther, 2000)

— MCMC methods (Neal, 1997)



MAP Gaussian process classification

To obtain the MAP approximation to the GPC solution, we find f that maximizes the convex
function

W(y) =-> log(1+e/) - %fTKflf +ec

i=1
The optimization is carried out using the Newton-Raphson iteration
frev = K(I 4+ WK) YW+ (t — 7))
where W = diag(71(1 — 1), .., 7 (1 — 7)) and ; = o (f;). Basic complexity is O(n3)

For a test point x, we compute f(x.) and the variance, and make the prediction as

P(class 1|x., D) = /a(f*)p(f*ly)df*

This is a quadratic programming problem. Can be solved in many ways, e.g.

with interior point methods, or special purpose algorithms such as SMO.

Basic complexity is O(n3).

e Define go(2) = log(1 + e~ %)

e SVM classifier is similar to GP classifier, but with g5 replaced by
gSVM(Z) = [1 — Z]+ (Wahba, 1999)

SVMs

1-norm soft margin classifier has the form

n
f(x) = yiofk(x,x;) + wp
i=1
where y; € {—1, 1} and a* optimizes the quadratic form

n 1 n
Qla)= > a;— 5 > titjogok(xg, x;5)
i=1 ij=1
subject to the constraints

n
> yia; =0
i=1
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o Note that the MAP solution using g solution is not sparse, but gives a
probability output



