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Overview

I Principal Components Analysis
I Factor Analysis
I Independent Components Analysis
I Non-linear Factor Analysis
I Reading: Handout on “Factor Analysis and Beyond”,

Bishop §12.1, 12.2 (but not 12.2.1, 12.2.2, 12.2.3), 12.4
(but not 12.4.2)
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Covariance matrix

I Let 〈 〉 denote an average
I Suppose we have a random vector X = (X1,X2, . . . ,Xd )T

I 〈X〉 denotes the mean of X, (µ1, µ2, . . . µd )T

I σii = 〈(Xi − µi)
2〉 is the variance of component i (gives a

measure of the “spread” of component i)
I σij = 〈(Xi − µi)(Xj − µj)〉 is the covariance between

components i and j
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I In d-dimensions there are d variances and d(d − 1)/2
covariances which can be arranged into a covariance matrix Σ

I The population covariance matrix is denoted Σ, the sample
covariance matrix is denoted S
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Principal Components Analysis

If you want to use a single number to describe a whole vector
drawn from a known distribution, pick the projection of the
vector onto the direction of maximum variation (variance)

I Assume 〈x〉 = 0
I y = w.x
I Choose w to maximize 〈y2〉, subject to w.w = 1
I Solution: w is the eigenvector corresponding to the largest

eigenvalue of Σ = 〈xxT 〉
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I Generalize this to consider projection from d dimensions
down to m

I Σ has eigenvalues λ1 ≥ λ2 ≥ . . . λd ≥ 0
I The directions to choose are the first m eigenvectors of Σ

corresponding to λ1, . . . , λm

I wi .wj = 0 i 6= j
I Fraction of total variation explained by using m principal

components is ∑m
i=1 λi∑d
i=1 λi

I PCA is basically a rotation of the axes in the data space
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Factor Analysis

I A latent variable model; can the observations be explained
in terms of a small number of unobserved latent variables ?

I FA is a proper statistical model of the data; it explains
covariance between variables rather than variance (cf
PCA)

I FA has a controversial rôle in social sciences
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I visible variables : x = (x1, . . . , xd ),
I latent variables: z = (z1, . . . , zm), z ∼ N(0, Im)

I noise variables: e = (e1, . . . ,ed ), e ∼ N(0,Ψ), where
Ψ = diag(ψ1, . . . , ψd ).

Assume
x = µ + Wz + e

then covariance structure of x is

C = WW T + Ψ

W is called the factor loadings matrix
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p(x) is like a multivariate Gaussian pancake

p(x|z) ∼ N(Wz + µ,Ψ)

p(x) =

∫
p(x|z)p(z)dz

p(x) ∼ N(µ,WW T + Ψ)
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I Rotation of solution: if W is a solution, so is WR where
RRT = Im as (WR)(WR)T = WW T . Causes a problem if
we want to interpret factors. Unique solution can be
imposed by various conditions, e.g. that W T Ψ−1W is
diagonal.

I Is the FA model a simplification of the covariance
structure? S has d(d + 1)/2 independent entries. Ψ and
W together have d + dm free parameters (and uniqueness
condition above can reduce this). FA model makes sense if
number of free parameters is less than d(d + 1)/2.
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FA example

[from Mardia, Kent & Bibby, table 9.4.1]
I Correlation matrix

mechanics
vectors
algebra
analysis
statstics


1 0.553 0.547 0.410 0.389

1 0.610 0.485 0.437
1 0.711 0.665

1 0.607
1


I Maximum likelihood FA (impose that W T Ψ−1W is

diagonal). Require m ≤ 2 otherwise more free parameters
than entries in S.
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m = 1 m = 2 (not rotated) m = 2 (rotated)
Variable w1 w1 w2 w̃1 w̃2

1 0.600 0.628 0.372 0.270 0.678
2 0.667 0.696 0.313 0.360 0.673
3 0.917 0.899 -0.050 0.743 0.510
4 0.772 0.779 -0.201 0.740 0.317
5 0.724 0.728 -0.200 0.698 0.286

I 1-factor and first factor of the 2-factor solutions differ (cf PCA)

I problem of interpretation due to rotation of factors
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FA for visualization

p(z|x) ∝ p(z)p(x|z)

Posterior is a Gaussian. If z is low dimensional. Can be used for
visualization (as with PCA)
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Learning W , Ψ

I Maximum likelihood solution available (Lawley/Jöreskog).
I EM algorithm for ML solution (Rubin and Thayer, 1982)

I E-step: for each xi , infer p(z|xi )
I M-step: do linear regression from z to x to get W

I Choice of m difficult (see Bayesian methods later).
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Comparing FA and PCA

I Both are linear methods and model second-order structure
S

I FA is invariant to changes in scaling on the axes, but not
rotation invariant (cf PCA).

I FA models covariance, PCA models variance
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Probabilistic PCA

Tipping and Bishop (1997), see Bishop §12.2

Let Ψ = σ2I.

I In this case WML spans the space defined by the first m
eigenvectors of S

I PCA and FA give same results as Ψ→ 0.
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Example Application:
Handwritten Digits Recognition

Hinton, Dayan and Revow, IEEE Trans Neural Networks 8(1), 1997

I Do digit recognition with class-conditional densities

I 8× 8 images⇒ 64 · 65/2 entries in the covariance matrix.

I 10-dimensional latent space used

I Visualization of W matrix. Each hidden unit gives rise to a
weight image ...

I In practice use a mixture of FAs!
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Useful Texts

on PCA and FA

I B. S. Everitt and G. Dunn “Applied Multivariate Data
Analysis” Edward Arnold, 1991.

I C. Chatfield and A. J. Collins “Introduction to Multivariate
Analysis”, Chapman and Hall, 1980.

I K. V. Mardia, J. T. Kent and J. M. Bibby “Multivariate
Analysis”, Academic Press, 1979.
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Independent Components Analysis

I A non-Gaussian latent variable model, plus linear
transformation, e.g.

p(z) ∝
m∏

i=1

e−|zi |

x = Wz + µ + e

I Rotational symmetry in z-space is now broken

I p(x) is non-Gaussian, go beyond second-order statistics of data
for fitting model

I Can be used with dim(z) = dim(x) for blind source separation

I http://www.cnl.salk.edu/∼tony/ica.html

I Blind source separation demo: Te-Won Lee
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unmixed mixed

20 / 26



A General View of Latent Variable Models

. . .

. . . z

x

I Clustering: z is one-on-in-m encoding
I Factor analysis: z ∼ N(0, Im)

I ICA: p(z) =
∏

i p(zi), and each p(zi) is non-Gaussian
I Latent Dirichlet Allocation: z ∼ Dir(α) (Blei et al, 2003).

Used especially for “topic modelling” of documents
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Non-linear Factor Analysis

p(x) =

∫
p(x|z)p(z)dz

For PPCA
p(x|z) ∼ N(Wz + µ, σ2I)

If we make the prediction of the mean a non-linear function of z, we
get non-linear factor analysis, with p(x|z) ∼ N(φ(z), σ2I) and
φ(z) = (φ1(z), φ2(z), . . . , φd (z))T . However, there is a problem— we
can’t do the integral analytically, so we need to approximate it.

p(x) ' 1
K

K∑
k=1

p(x|zk )

where the samples zk are drawn from the density p(z). Note that the
approximation to p(x) is a mixture of Gaussians.
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I Generative Topographic Mapping (Bishop, Svensen and
Williams, 1997/8)

I Do GTM demo
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Fitting the Model to Data

I Adjust the parameters of φ and σ2 to maximize the log
likelihood of the data.

I For a simple form of mapping φ(z) =
∑

i wiψi(z) we can
obtain EM updates for the weights {wi} and the variance
σ2.

I We are fitting a constrained mixture of Gaussians to the
data. The algorithm works quite like Kohonen’s
self-organizing map (SOM), but is more principled as there
is an objective function.
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Visualization

I The mean may be
a bad summary of
the posterior
distribution.

+

z

P(z|x)
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Manifold Learning

I A manifold is a topological space that is locally Euclidean
I We are particularly interested in the case of non-linear

dimensionality reduction, where a low-dimensional
nonlinear manifold is embedded in a high-dimensional
space

I As well as GTM, there are other methods for non-linear
dimensionality reduction. Some recent methods based on
eigendecomposition include:

I Isomap (Renenbaum et al, 2000)
I Local linear embedding (Roweis and Saul, 2000)
I Lapacian eigenmaps (Belkin and Niyogi, 2001)
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