Overview

Factor Analysis and Beyond

Chris Williams

School of Informatics, University of Edinburgh

October 2011

Principal Components Analysis Factor Analysis

- ► Independent Components Analysis
- Non-linear Factor Analysis
- Reading: Handout on "Factor Analysis and Beyond", Bishop §12.1, 12.2 (but not 12.2.1, 12.2.2, 12.2.3), 12.4 (but not 12.4.2)

1/26 2/26

Covariance matrix

- ▶ Let ⟨ ⟩ denote an average
- ▶ Suppose we have a random vector $\mathbf{X} = (X_1, X_2, \dots, X_d)^T$
- \triangleright $\langle \mathbf{X} \rangle$ denotes the mean of \mathbf{X} , $(\mu_1, \mu_2, \dots \mu_d)^T$
- $\sigma_{ii} = \langle (X_i \mu_i)^2 \rangle$ is the variance of component *i* (gives a measure of the "spread" of component i)
- $ightharpoonup \sigma_{ij} = \langle (X_i \mu_i)(X_i \mu_i) \rangle$ is the covariance between components *i* and *i*

- ▶ In *d*-dimensions there are *d* variances and d(d-1)/2covariances which can be arranged into a covariance matrix Σ
- ▶ The *population* covariance matrix is denoted Σ , the *sample* covariance matrix is denoted S

3/26 4/26

Principal Components Analysis

If you want to use a single number to describe a whole vector drawn from a known distribution, pick the projection of the vector onto the direction of maximum variation (variance)

- ▶ Assume $\langle \mathbf{x} \rangle = \mathbf{0}$
- $\mathbf{y} = \mathbf{w}.\mathbf{x}$
- ▶ Choose **w** to maximize $\langle y^2 \rangle$, subject to **w**.**w** = 1
- ▶ Solution: **w** is the eigenvector corresponding to the largest eigenvalue of $\Sigma = \langle \mathbf{x} \mathbf{x}^T \rangle$

Factor Analysis

- ➤ A latent variable model; can the observations be explained in terms of a small number of unobserved latent variables?
- ► FA is a proper statistical model of the data; it explains covariance between variables rather than variance (cf PCA)
- ► FA has a controversial rôle in social sciences

- ► Generalize this to consider projection from *d* dimensions down to *m*
- ▶ Σ has eigenvalues $\lambda_1 \ge \lambda_2 \ge \dots \lambda_d \ge 0$
- ► The directions to choose are the first m eigenvectors of Σ corresponding to $\lambda_1, \ldots, \lambda_m$
- $\mathbf{w}_i.\mathbf{w}_j = 0 \qquad i \neq j$
- ► Fraction of total variation explained by using *m* principal components is

$$\frac{\sum_{i=1}^{m} \lambda_i}{\sum_{i=1}^{d} \lambda_i}$$

6/26

▶ PCA is basically a rotation of the axes in the data space

ightharpoonup visible variables : $\mathbf{x} = (x_1, \dots, x_d)$,

▶ latent variables: $\mathbf{z} = (z_1, \dots, z_m), \mathbf{z} \sim N(0, I_m)$

▶ noise variables: $\mathbf{e} = (e_1, \dots, e_d)$, $\mathbf{e} \sim N(0, \Psi)$, where $\Psi = \operatorname{diag}(\psi_1, \dots, \psi_d)$.

Assume

5/26

$$\mathbf{x} = \boldsymbol{\mu} + W\mathbf{z} + \mathbf{e}$$

then covariance structure of \mathbf{x} is

$$C = WW^T + \Psi$$

W is called the factor loadings matrix

7/26

 $p(\mathbf{x})$ is like a multivariate Gaussian pancake

$$egin{aligned}
ho(\mathbf{x}|\mathbf{z}) &\sim N(\mathit{W}\mathbf{z} + \mu, \Psi) \
ho(\mathbf{x}) &= \int
ho(\mathbf{x}|\mathbf{z})
ho(\mathbf{z}) d\mathbf{z} \
ho(\mathbf{x}) &\sim N(\mu, \mathit{WW}^T + \Psi) \end{aligned}$$

 $RR^T = I_m$ as $(WR)(WR)^T = WW^T$. Causes a problem if we want to interpret factors. Unique solution can be imposed by various conditions, e.g. that $W^T \Psi^{-1} W$ is diagonal.

▶ Rotation of solution: if W is a solution, so is WR where

▶ Is the FA model a simplification of the covariance structure? S has d(d+1)/2 independent entries. Ψ and W together have d+dm free parameters (and uniqueness condition above can reduce this). FA model makes sense if number of free parameters is less than d(d+1)/2.

9/26 10/26

FA example

[from Mardia, Kent & Bibby, table 9.4.1]

Correlation matrix

▶ Maximum likelihood FA (impose that $W^T \Psi^{-1} W$ is diagonal). Require $m \le 2$ otherwise more free parameters than entries in S.

Variable	m = 1 w ₁	m = 2 w ₁	(not rotated) w ₂	$m = 2$ $\tilde{\mathbf{W}}_1$	(rotated) $\tilde{\mathbf{w}}_2$
1	0.600	0.628	0.372	0.270	0.678
2	0.667	0.696	0.313	0.360	0.673
3	0.917	0.899	-0.050	0.743	0.510
4	0.772	0.779	-0.201	0.740	0.317
5	0.724	0.728	-0.200	0.698	0.286

- ▶ 1-factor and first factor of the 2-factor solutions differ (cf PCA)
- problem of interpretation due to rotation of factors

11/26 12/26

FA for visualization

$$p(\mathbf{z}|\mathbf{x}) \propto p(\mathbf{z})p(\mathbf{x}|\mathbf{z})$$

Posterior is a Gaussian. If \mathbf{z} is low dimensional. Can be used for visualization (as with PCA)

Learning W, Ψ

- Maximum likelihood solution available (Lawley/Jöreskog).
- ► EM algorithm for ML solution (Rubin and Thayer, 1982)
 - ► E-step: for each \mathbf{x}_i , infer $p(\mathbf{z}|\mathbf{x}_i)$
 - ▶ M-step: do linear regression from **z** to **x** to get W
- ▶ Choice of *m* difficult (see Bayesian methods later).

13/26

14/26

Comparing FA and PCA

Both are linear methods and model second-order structure S

- ► FA is invariant to changes in scaling on the axes, but not rotation invariant (cf PCA).
- ► FA models covariance, PCA models variance

Probabilistic PCA

Tipping and Bishop (1997), see Bishop §12.2

Let
$$\Psi = \sigma^2 I$$
.

- ▶ In this case W_{ML} spans the space defined by the first m eigenvectors of S
- ▶ PCA and FA give same results as $\Psi \rightarrow 0$.

15/26 16/26

Example Application: Handwritten Digits Recognition

Hinton, Dayan and Revow, IEEE Trans Neural Networks 8(1), 1997

- ▶ Do digit recognition with class-conditional densities
- ▶ 8×8 images $\Rightarrow 64 \cdot 65/2$ entries in the covariance matrix.
- ▶ 10-dimensional latent space used
- ► Visualization of *W* matrix. Each hidden unit gives rise to a weight image ...
- In practice use a mixture of FAs!

Useful Texts

on PCA and FA

- ▶ B. S. Everitt and G. Dunn "Applied Multivariate Data Analysis" Edward Arnold, 1991.
- ► C. Chatfield and A. J. Collins "Introduction to Multivariate Analysis", Chapman and Hall, 1980.
- ► K. V. Mardia, J. T. Kent and J. M. Bibby "Multivariate Analysis", Academic Press, 1979.

18/26

Independent Components Analysis

► A non-Gaussian latent variable model, plus linear transformation, e.g.

$$ho(\mathbf{z}) \propto \prod_{i=1}^m e^{-|z_i|}$$

$$\mathbf{x} = W\mathbf{z} + \boldsymbol{\mu} + \mathbf{e}$$

- ► Rotational symmetry in **z**-space is now broken
- $ightharpoonup p(\mathbf{x})$ is non-Gaussian, go beyond second-order statistics of data for fitting model
- ▶ Can be used with $dim(\mathbf{z}) = dim(\mathbf{x})$ for blind source separation
- http://www.cnl.salk.edu/~tony/ica.html
- ▶ Blind source separation demo: Te-Won Lee

19/26 20/26

A General View of Latent Variable Models

- ► Clustering: **z** is one-on-in-*m* encoding
- ▶ Factor analysis: $\mathbf{z} \sim N(0, I_m)$
- ▶ ICA: $p(\mathbf{z}) = \prod_i p(z_i)$, and each $p(z_i)$ is non-Gaussian
- ▶ Latent Dirichlet Allocation: $\mathbf{z} \sim \mathrm{Dir}(\alpha)$ (Blei et al, 2003). Used especially for "topic modelling" of documents

- ► Generative Topographic Mapping (Bishop, Svensen and Williams, 1997/8)
- ▶ Do GTM demo

Non-linear Factor Analysis

$$p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

For PPCA

$$p(\mathbf{x}|\mathbf{z}) \sim N(W\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \boldsymbol{I})$$

If we make the prediction of the mean a non-linear function of \mathbf{z} , we get non-linear factor analysis, with $p(\mathbf{x}|\mathbf{z}) \sim N(\phi(\mathbf{z}), \sigma^2 I)$ and $\phi(\mathbf{z}) = (\phi_1(\mathbf{z}), \phi_2(\mathbf{z}), \dots, \phi_d(\mathbf{z}))^T$. However, there is a problem— we can't do the integral analytically, so we need to approximate it.

$$p(\mathbf{x}) \simeq \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k)$$

where the samples \mathbf{z}_k are drawn from the density $p(\mathbf{z})$. Note that the approximation to $p(\mathbf{x})$ is a mixture of Gaussians.

21/26 22/26

Fitting the Model to Data

- Adjust the parameters of ϕ and σ^2 to maximize the log likelihood of the data.
- ▶ For a simple form of mapping $\phi(\mathbf{z}) = \sum_i \mathbf{w}_i \psi_i(\mathbf{z})$ we can obtain EM updates for the weights $\{\mathbf{w}_i\}$ and the variance σ^2 .
- ▶ We are fitting a constrained mixture of Gaussians to the data. The algorithm works quite like Kohonen's self-organizing map (SOM), but is more principled as there is an objective function.

23/26 24/26

Visualization

► The mean may be a bad summary of the posterior distribution.

Manifold Learning

- ▶ A manifold is a topological space that is locally Euclidean
- ▶ We are particularly interested in the case of non-linear dimensionality reduction, where a low-dimensional nonlinear manifold is embedded in a high-dimensional space
- ➤ As well as GTM, there are other methods for non-linear dimensionality reduction. Some recent methods based on eigendecomposition include:
 - ► Isomap (Renenbaum et al, 2000)
 - Local linear embedding (Roweis and Saul, 2000)
 - Lapacian eigenmaps (Belkin and Niyogi, 2001)

25/26 26/26