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Inference in Belief Networks

Partition the random variables x into three disjoint subsets
xE , xF and xR. We wish to compute the posterior p(xF |xE)
over the query nodes xF

This involves conditioning on the evidence nodes xE and
summing out (integrating out) the hidden nodes xR

If the joint distribution is simply a huge table this is trivial:
select the appropriate indices in the columns
corresponding to xE , sum over the columns corresponding
to xR, and renormalize the resulting table over xF

But what if the distribution is represented by a directed
graphical model?
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An Example Network
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p(x1|x6) = p(x1, x6)/p(x6) = p(x1, x6)/
∑
x ′

1

p(x
′

1, x6)
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p(x1, x6) =
∑
x2

∑
x3

∑
x4

∑
x5

p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2, x5)

= p(x1)
∑
x2

p(x2|x1)
∑
x3

p(x3|x1)
∑
x4

p(x4|x2)
∑
x5

p(x5|x3)p(x6|x2, x5)

= p(x1)
∑
x2

p(x2|x1)
∑
x3

p(x3|x1)m5(x2, x3)
∑
x4

p(x4|x2)

= p(x1)
∑
x2

p(x2|x1)m4(x2)
∑
x3

p(x3|x1)m5(x2, x3)

= p(x1)
∑
x2

p(x2|x1)m4(x2)m3(x1, x2)

= p(x1) m2(x1)

using elimination ordering (6,5,4,3,2,1)

5 / 14



Notes on the example

x6 means that x6 is fixed to a specific value
m5(x2, x3) =

∑
x5

p(x5|x3)p(x6|x2, x5) etc
Note that m4(x2) = 1; why?
Key idea 1: push sums inside products
Key idea 2: cache subexpressions
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Evidence Potentials

Elimination uses a book-keeping trick, evidential potentials

g(x i) =
∑

xi

g(xi)δ(xi , x i)

This trick allows us to treat conditioning in the same way as
marginalization
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Elimination Algorithm, part I

ELIMINATE(G,E,F)
INITIALIZE(G,F)
EVIDENCE(E)
UPDATE(G)
NORMALIZE(F)

INITIALIZE(G,F)
choose an ordering O such that F appears last
for each node Xi in V

place potential p(xi |parentsi) on the active list
end for
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Elimination Algorithm, part II

EVIDENCE(E)
for each i in E

place potential δ(xi , x i) on the active list
end for

UPDATE(G)
for each i in O

find all potentials in the active list that reference xi
and remove them from the active list
Let φi(xTi ) denote the product of these potentials
Let mi(xSi ) =

∑
xi
φi(xTi )

Place mi(xSi ) on the active list
end for

NORMALIZE(F)
p(xF |xE)← φF (xF )/

∑
xF
φF (xF )
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Graph Elimination

Consider first undirected graphs with

pE(x) =
1
Z

∏
C

ψE
XC

(xc)

where the product is over cliques
Start with an elimination ordering O
At each step the algorithm eliminates the next node in O,
where “eliminate” means removing the node from the
graph and connecting the (remaining) neighbours of the
node
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Moralization

There is one additional complexity for directed graphs:
parents may not be explicitly connected, but are involved in
the same potential function
Thus to think of the ELIMINATION algorithm as node
removal, we must first connect all the parents of every
node and drop the directions of the links: this is known as
“moralization”
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Graphically the stages for the example are:
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Reconstituted Graph

The reconstituted graph is the graph whose edge set
includes all the original edges as well as any new edges
created during elimination
In fact, the reconstituted graph is a triangulated graph, see
forthcoming lecture on the junction tree algorithm.
Elimination is a simple algorithm for triangulating a graph
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The reconstituted graph; X2 − X5 is added via moralization, and
X2 − X3 is added when eliminating X5
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