The Elimination Algorithm

Chris Williams

School of Informatics, University of Edinburgh

October 2009

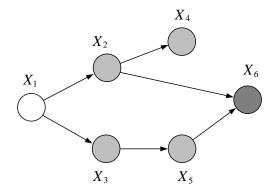
Overview

- Inference in Belief Networks
- Elimination in an Example Network
- The Elimination Algorithm
- Evidence Potentials
- Graph Elimination
- Reconstituted Graph
- Reading: Jordan chapter 3

Inference in Belief Networks

- Partition the random variables x into three disjoint subsets x_E, x_F and x_R. We wish to compute the posterior p(x_F|x_E) over the query nodes x_F
- This involves conditioning on the evidence nodes x_E and summing out (integrating out) the hidden nodes x_R
- If the joint distribution is simply a huge table this is trivial: select the appropriate indices in the columns corresponding to x_E, sum over the columns corresponding to x_R, and renormalize the resulting table over x_F
- But what if the distribution is represented by a directed graphical model?

An Example Network



 $p(x_1|\overline{x}_6) = p(x_1,\overline{x}_6)/p(\overline{x}_6) = p(x_1,\overline{x}_6)/\sum_{x_1'} p(x_1',\overline{x}_6)$

$$p(x_1, \overline{x}_6) = \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(x_1) p(x_2 | x_1) p(x_3 | x_1) p(x_4 | x_2) p(x_5 | x_3) p(\overline{x}_6 | x_2, x_5)$$

$$= p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3} p(x_3 | x_1) \sum_{x_4} p(x_4 | x_2) \sum_{x_5} p(x_5 | x_3) p(\overline{x}_6 | x_2, x_5)$$

$$= p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3} p(x_3 | x_1) m_5(x_2, x_3) \sum_{x_4} p(x_4 | x_2)$$

$$= p(x_1) \sum_{x_2} p(x_2 | x_1) m_4(x_2) \sum_{x_3} p(x_3 | x_1) m_5(x_2, x_3)$$

$$= p(x_1) \sum_{x_2} p(x_2 | x_1) m_4(x_2) m_3(x_1, x_2)$$

$$= p(x_1) m_2(x_1)$$

using elimination ordering (6, 5, 4, 3, 2, 1)

Notes on the example

- \overline{x}_6 means that x_6 is fixed to a *specific* value
- $m_5(x_2, x_3) = \sum_{x_5} p(x_5|x_3) p(\overline{x}_6|x_2, x_5)$ etc
- Note that $m_4(x_2) = 1$; why?
- Key idea 1: push sums inside products
- Key idea 2: cache subexpressions

Evidence Potentials

Elimination uses a book-keeping trick, evidential potentials

$$g(\overline{x}_i) = \sum_{x_i} g(x_i) \delta(x_i, \overline{x}_i)$$

 This trick allows us to treat conditioning in the same way as marginalization

```
eliminate(G,E,F)
initialize(G,F)
evidence(E)
update(G)
normalize(F)
```

INITIALIZE(G,F) choose an ordering *O* such that *F* appears last for each node X_i in *V* place potential $p(x_i | parents_i)$ on the active list end for

Elimination Algorithm, part II

```
EVIDENCE(E)
for each i in E
place potential \delta(x_i, \overline{x}_i) on the active list
end for
```

```
UPDATE(G)
for each i in O
find all potentials in the active list that reference x_i
and remove them from the active list
Let \phi_i(x_{T_i}) denote the product of these potentials
Let m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})
Place m_i(x_{S_i}) on the active list
end for
```

```
NORMALIZE(F)
p(x_F | \overline{x}_E) \leftarrow \phi_F(x_F) / \sum_{x_F} \phi_F(x_F)
```

Graph Elimination

Consider first undirected graphs with

$$p^{E}(x) = \frac{1}{Z} \prod_{C} \psi^{E}_{X_{C}}(x_{C})$$

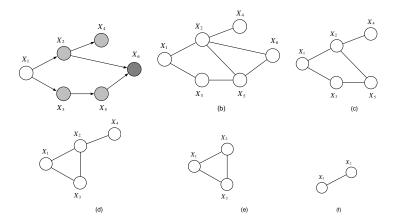
where the product is over cliques

- Start with an elimination ordering O
- At each step the algorithm eliminates the next node in *O*, where "eliminate" means removing the node from the graph and connecting the (remaining) neighbours of the node

Moralization

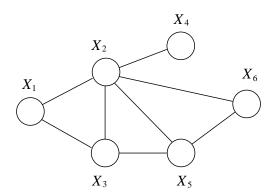
- There is one additional complexity for directed graphs: parents may not be explicitly connected, but are involved in the same potential function
- Thus to think of the ELIMINATION algorithm as node removal, we must first connect all the parents of every node and drop the directions of the links: this is known as "moralization"

Graphically the stages for the example are:



Reconstituted Graph

- The *reconstituted* graph is the graph whose edge set includes all the original edges as well as any new edges created during elimination
- In fact, the reconstituted graph is a *triangulated* graph, see forthcoming lecture on the junction tree algorithm.
 Elimination is a simple algorithm for triangulating a graph



The *reconstituted* graph; $X_2 - X_5$ is added via moralization, and $X_2 - X_3$ is added when eliminating X_5