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Overview

Classification and Bayes decision rule
Sampling vs diagnostic paradigm
Classification with Gaussians
Loss, Utility and Risk
Reject option
Reading: Bishop §1.5
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Classification

How should we assign example x to a class Ck ?

1 use discriminant functions yk (x)

2 model class-conditional densities P(x|Ck ) and then use Bayes’
rule

3 Model posterior probabilities P(Ck |x) directly

Approaches 2 and 3 give a two-step decision process

Inference of P(Ck |x)

Decision making in the face of uncertainty
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Bayes decision rule: allocate example x to class k if

P(Ck |x) > P(Cj |x) ∀j 6= k

This rule minimizes the expected error at x. Proof:
Choosing class i will lead to

P(error|x) = 1 − P(Ci |x)

This is minimized by choosing i = k . Note that a
randomized allocation rule is not superior.
Using Bayes’ rule, rewrite decision rule as

P(x|Ck )P(Ck ) > P(x|Cj)P(Cj) ∀j 6= k

P(error) is minimized by this decision rule

P(error) =

∫
P(error, x) dx

=

∫
P(error|x)p(x) dx
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Errors in classification arise from

1 Errors due to class overlap
these are unavoidable

2 Errors resulting from an incorrect decision rule
use the correct rule!

3 Errors resulting from an inaccurate model of the posterior
probabilities
accurate modelling is a challenging problem
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Model P(Ck |x) or P(x|Ck) ?

Diagnostic paradigm (discriminative): Model P(Ck |x)
directly
Sampling paradigm (generative): Model P(x|Ck ) and P(Ck )

Pros/cons of diagnostic paradigm:

Modelling P(Ck |x) can be simpler than modelling
class-conditional densities.
Less sensitive to modelling assumptions as what we need,
P(Ck |x) is modelled directly

Marginal density p(x) is needed to handle outliers and
missing values

Use of unclassified observations difficult in diagnostic
paradigm

Dealing with missing inputs is difficult
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Classification with Gaussians

Check if
P(C1|x)

P(C2|x)
=

p(x|C1)P(C1)

p(x|C2)P(C2)
≷ 1

or if
∆(x) = log

p(x|C1)P(C1)

p(x|C2)P(C2)
≷ 0

For Gaussian class-conditional densities and Σ1 = Σ2 we
obtain

(µ1 − µ2)
T Σ−1x +

1
2

(µT
2 Σ−1µ2 − µT

1 Σ−1µ1) + ln
P(C1)

P(C2)
≷ 0

This is a linear classifier
For Σ1 6= Σ2, boundaries are hyperquadrics
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Loss and Risk

Actions a1, . . . , aA might be taken. Given x, which one should be
taken?

Lji is the loss incurred if action ai is taken when the state of
nature is Cj

The expected loss (or risk) of taking action ai given x is

R(ai |x) =
∑

j

LjiP(Cj |x)

Choose action k if∑
j

Ljk P(Cj |x) <
∑

j

LjiP(Cj |x) ∀i 6= k

Let a(x) = argminiR(ai |x)

Overall risk R
R =

∫
R(a(x)|x)p(x) dx
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Example loss function

Patients are classified to classes C1 = healthy, C2 = tumour.

Actions are a1 = discharge the patient, a2 = operate

Assume L11 = L22 = 0, L12 = 1 and L21 = 10, i.e. it is 10 times
worse to discharge the patient when they have a tumour than to
operate when they do not

R(a1|x) = L11P(C1|x) + L21P(C2|x) = L21P(C2|x)

R(a2|x) = L12P(C1|x) + L22P(C2|x) = L12P(C1|x)

Choose action a1 when R(a1|x) < R(a2|x), i.e. when

L21P(C2|x) < L12P(C1|x)

or
P(C1|x)

P(C2|x)
>

L21

L12
= 10

If L21 = L12 = 1 then threshold is 1; in our case we require
stronger evidence in favour of C1 = healthy in order to discharge
the patient
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In credit risk assignment, losses are monetary
Note that rescaling loss matrix does not change the
decision
Minimum classification error is obtained by

Lji = 1 − δji
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Loss−adjusted Decision Boundary

Normal
Adjusted
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Utility and Loss

Basically same thing with opposite sign. Maximize
expected utility, minimize expected loss.
See Russell and Norvig ch 16 for a discussion of
fundamentals of utility theory, and utility of money [not
examinable]
Russell and Norvig ch 17 discuss sequential decision
problems. Involves utilities, uncertainty and sensing;
generalizes problems of planning and search. See RL
course.
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Reject option

P(error|x) = 1 − max
j

P(Cj |x)

If we can reject some examples, reject those that are most
confusable, i.e. where P(error|x) is highest
Choose a threshold θ and reject if

max
j

P(Cj |x) < θ

Gives rise to error-reject curves as θ is varied from 0 to 1
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Error-reject curve
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