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Classification

How should we assign example x to a class Cx?
@ use discriminant functions y(x)

@ model class-conditional densities P(x|Cx) and then use Bayes’
rule

© Model posterior probabilities P(Ck|x) directly
Approaches 2 and 3 give a two-step decision process
@ Inference of P(Cx|x)

@ Decision making in the face of uncertainty

@ Classification and Bayes decision rule
@ Sampling vs diagnostic paradigm

@ Classification with Gaussians

@ Loss, Utility and Risk

@ Reject option

@ Reading: Bishop §1.5

@ Bayes decision rule: allocate example x to class k if
P(Ckx) > P(Cjlx) ~ Vj #k

@ This rule minimizes the expected error at x. Proof:
Choosing class i will lead to

P(error|x) = 1 — P(C;|x)

This is minimized by choosing i = k. Note that a
randomized allocation rule is not superior.
@ Using Bayes’ rule, rewrite decision rule as

P(x|Ck)P(Ck) > P(XIC)P(C)) Vi #k
@ P(error) is minimized by this decision rule

P(error) = /P(error,x) ax

:/P(errorlx)p(x) ax



Errors in classification arise from

@ Errors due to class overlap
these are unavoidable

@ Errors resulting from an incorrect decision rule
use the correct rule!

© Errors resulting from an inaccurate model of the posterior
probabilities
accurate modelling is a challenging problem
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Model P(Ck|x) or P(x|Ck) ?

@ Diagnostic paradigm (discriminative): Model P(Ck|x)
directly
@ Sampling paradigm (generative): Model P(x|Cx) and P(Ck)
@ Pros/cons of diagnostic paradigm:
@ Modelling P(Ck|x) can be simpler than modelling
class-conditional densities.
Less sensitive to modelling assumptions as what we need,
P(Ck|x) is modelled directly

Marginal density p(x) is needed to handle outliers and
missing values

® Use of unclassified observations difficult in diagnostic
paradigm

Dealing with missing inputs is difficult

Classification with Gaussians

@ Check if

PCix) _ p(x[C1)P(C1) |

P(Calx) — p(x|C2)P(C2) =

or if
p(X|C1)P(C1) _

P(XIC2)P(C2) = °

A(x) = log

@ For Gaussian class-conditional densities and 1 = ¥, we
obtain

_ 1 _ _
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This is a linear classifier
@ For ¥4 # ¥, boundaries are hyperquadrics



Loss and Risk

@ Actions ay, ..., as might be taken. Given x, which one should be
taken?

@ Lj is the loss incurred if action a; is taken when the state of
nature is C;

@ The expected loss (or risk) of taking action a; given x is
R(ailx) = LiP(Cj|x)
J

@ Choose action k if
Y LkP(Clx) < D LiP(Clx)  Vi#k
i i
@ Let a(x) = argmin;R(a;|x)
@ Overallrisk R
R= /R(a(x)|x)p(x) dx

@ In credit risk assignment, losses are monetary

@ Note that rescaling loss matrix does not change the
decision

@ Minimum classification error is obtained by

Li=1-6
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Example loss function

Patients are classified to classes Cy = healthy, C, = tumour.
Actions are a; = discharge the patient, a, = operate
Assume Li; = Loo =0, L1 =1 and Ly; = 10, i.e. itis 10 times

worse to discharge the patient when they have a tumour than to
operate when they do not

R(a1]x) = L11 P(C1|x) + L21 P(C2|X) = L1 P(C2|X)
R(az|x) = L12P(C1|x) + Lo P(C2|X) = L12P(C1|X)
Choose action a; when R(aq|x) < R(az|x), i.e. when
Lot P(Co|X) < L12P(C1]X)

> PEIX) _ L
11X 21
>-—=10
P(C2|X) L12
If Loy = Lyo = 1 then threshold is 1; in our case we require
stronger evidence in favour of C; = healthy in order to discharge
the patient

Loss—adjusted Decision Boundary
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Utility and Loss

@ Basically same thing with opposite sign. Maximize
expected utility, minimize expected loss.

@ See Russell and Norvig ch 16 for a discussion of
fundamentals of utility theory, and utility of money [not
examinable]

@ Russell and Norvig ch 17 discuss sequential decision
problems. Involves utilities, uncertainty and sensing;
generalizes problems of planning and search. See RL
course.
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Error-reject curve
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Reject option

P(error|x) = 1 — max P(C;|x)
i

@ If we can reject some examples, reject those that are most
confusable, i.e. where P(error|X) is highest

@ Choose a threshold 6 and reject if

max P(C;|x) < ¢
i

@ Gives rise to error-reject curves as 6 is varied from 0 to 1
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