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Overview

Probability density functions
Univariate Gaussian
Multivariate Gaussian
Mahalanobis distance
Properties of Gaussian distributions
Graphical Gaussian models
Read: Bishop sec 2.3 (to p 93)
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Continuous distributions

Probability density function (pdf) for a continuous random
variable X

P(a ≤ X ≤ b) =

∫ b

a
p(x)dx

therefore
P(x ≤ X ≤ x + δx) ' p(x)δx

Example: Gaussian distribution

p(x) =
1

(2πσ2)1/2 exp−
{

(x − µ)2

2σ2

}
shorthand notation X ∼ N(µ, σ2)

Standard normal (or Gaussian) distribution Z ∼ N(0, 1)

Normalization ∫ ∞

−∞
p(x)dx = 1
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Cumulative distribution function

Φ(z) = P(Z ≤ z) =

∫ z

−∞
p(z ′)dz ′
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Expectation

E [g(X )] =

∫
g(x)p(x)dx

mean, E [X ]

Variance E [(X − µ)2]

For a Gaussian, mean = µ, variance = σ2

Shorthand: x ∼ N(µ, σ2)
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Bivariate Gaussian I

Let X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2)

If X1 and X2 are independent

p(x1, x2) =
1

2π(σ2
1σ2

2)1/2
exp−1

2

{
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

}

Let x =

(
x1
x2

)
, µ =

(
µ1
µ2

)
, Σ =

(
σ2

1 0
0 σ2

2

)
p(x) =

1
2π|Σ|1/2 exp−1

2

{
(x− µ)T Σ−1(x− µ)

}
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Bivariate Gaussian II

Covariance
Σ is the covariance
matrix

Σ = E [(x− µ)(x− µ)T ]

Σij = E [(xi −µi)(xj −µj)]

Example: plot of weight
vs height for a
population
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Multivariate Gaussian

P(x ∈ R) =
∫
R p(x)dx

Multivariate Gaussian

p(x) =
1

(2π)d/2|Σ|1/2 exp
{
−1

2
(x− µ)T Σ−1(x− µ)

}
Σ is the covariance matrix

Σ = E [(x− µ)(x− µ)T ]

Σij = E [(xi − µi)(xj − µj)]

Σ is symmetric
Shorthand x ∼ N(µ,Σ)

For p(x) to be a density, Σ must be positive definite
Σ has d(d + 1)/2 parameters, the mean has a further d
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Mahalanobis Distance

d2
Σ(xi , xj) = (xi − xj)

T Σ−1(xi − xj)

d2
Σ(xi , xj) is called the Mahalanobis distance between xi and xj

If Σ is diagonal, the contours of d2
Σ are axis-aligned ellipsoids

If Σ is not diagonal, the contours of d2
Σ are rotated ellipsoids

Σ = UΛUT

where Λ is diagonal and U is a rotation matrix

Σ is positive definite ⇒ entries in Λ are positive
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Parameterization of the covariance matrix

Fully general Σ =⇒ variables are correlated
Spherical or isotropic. Σ = σ2I. Variables are independent
Diagonal [Σ]ij = δijσ

2
i Variables are independent

Rank-constrained: Σ = WW T + Ψ, with W being a d × q
matrix with q < d − 1 and Ψ diagonal. This is the factor
analysis model. If Ψ = σ2I, then with have the probabilistic
principal components analysis (PPCA) model
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Transformations of Gaussian variables

Linear transformations of Gaussian RVs are Gaussian

X ∼ N(µx ,Σ)
Y = AX + b
Y ∼ N(Aµx + b, AΣAT )

Sums of Gaussian RVs are Gaussian

Y = X1 + X2
E [Y ] = E [X1] + E [X2]
var[Y ] = var[X1] + var[X2] + 2covar[X1, X2]
if X1 and X2 are independent var[Y ] = var[X1] + var[X2]
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Properties of the Gaussian distribution

Gaussian has relatively simple analytical properties

Central limit theorem. Sum (or mean) of M independent random
variables is distributed normally as M →∞ (subject to a few
general conditions)

Diagonalization of covariance matrix =⇒ rotated variables are
independent

All marginal and conditional densities of a Gaussian are
Gaussian

The Gaussian is the distribution that maximizes the entropy
H = −

∫
p(x) log p(x)dx for fixed mean and covariance
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Graphical Gaussian Models

Example:

x

y z

Let X denote pulse rate
Let Y denote measurement taken by machine 1, and Z
denote measurement taken by machine 2
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Model
X ∼ N(µx , vx)
Y = µy + wy (X − µx) + Ny
Z = µz + wz(X − µx) + Nz
noise Ny ∼ N(0, vN

y ), Nz ∼ N(0, vN
z ), independent

(X , Y , Z ) is jointly Gaussian; can do inference for X given
Y = y and Z = z
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As before
P(x , y , z) = P(x)P(y |x)P(z|x)

Show that

µ =

 µx
µy
µz



Σ =

 vx wyvx wzvx
wyvx w2

y vx + vN
y wywzvx

wzvx wywzvx w2
z vx + vN

z
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Inference in Gaussian models

Partition variables into two groups, X1 and X2

µ =

(
µ1
µ2

)

Σ =

(
Σ11 Σ12
Σ21 Σ22

)
µc

1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

Σc
1|2 = Σ11 − Σ12Σ

−1
22 Σ21

For proof see §2.3.1 of Bishop (2006) (not examinable)

Formation of joint Gaussian is analogous to formation of joint
probability table for discrete RVs. Propagation schemes are also
possible for Gaussian RVs
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Example Inference Problem

X Y
Y = 2X + 8 + Ny

Assume X ∼ N(0, 1/α), so wy = 2, µy = 8, and Ny ∼ N(0, 1)

Show that

µx|y =
2

4 + α
(y − 8)

var(x |y) =
1

4 + α
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Hybrid (discrete + continuous) networks

Could discretize continuous variables, but this is ugly, and
gives large CPTs
Better to use parametric families, e.g. Gaussian
Works easily when continuous nodes are children of
discrete nodes; we then obtain a conditional Gaussian
model
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