Coding and Information Theory

Chris Williams

School of Informatics, University of Edinburgh

November 2007
Overview

- What is information theory?
- Entropy
- Coding
- Rate-distortion theory
- Mutual information
- Channel capacity
- Reading: Bishop §1.6
Shannon (1948): Information theory is concerned with:

- **Source coding**, reducing redundancy by modelling the structure in the data
- **Channel coding**, how to deal with “noisy” transmission
- Key idea is **prediction**
 - Source coding: redundancy means predictability of the rest of the data given part of it
 - Channel coding: Predict what we want given what we have been given
Information Theory Textbooks

A discrete random variable X takes on values from an alphabet \mathcal{X}, and has probability mass function $P(x) = P(X = x)$ for $x \in \mathcal{X}$. The entropy $H(X)$ of X is defined as

$$H(X) = - \sum_{x \in \mathcal{X}} P(x) \log P(x)$$

convention: for $P(x) = 0$, $0 \times \log 1/0 \equiv 0$

The entropy measures the information content or “uncertainty” of X.

Units: $\log_2 \Rightarrow$ bits; $\log_e \Rightarrow$ nats.
Joint entropy, conditional entropy

\[H(X, Y) = - \sum_{x, y} P(x, y) \log P(x, y) \]

\[H(Y|X) = \sum_x P(x) H(Y|X = x) \]

\[= - \sum_x P(x) \sum_y P(y|x) \log P(y|x) \]

\[= - E_{P(x,y)} \log P(y|x) \]

\[H(X, Y) = H(X) + H(Y|X) \]

If \(X, Y \) are independent

\[H(X, Y) = H(X) + H(Y) \]
A coding scheme C assigns a code $C(x)$ to every symbol x; $C(x)$ has length $\ell(x)$. The expected code length $L(C)$ of the code is

$$L(C) = \sum_{x \in X} p(x)\ell(x)$$

Theorem 1: Noiseless coding theorem

The expected length $L(C)$ of any instantaneous code for X is bounded below by $H(X)$, i.e.

$$L(C) \geq H(X)$$

Theorem 2

There exists an instantaneous code such that

$$H(X) \leq L(C) < H(X) + 1$$
Practical coding methods

How can we come close to the lower bound?

- Huffman coding

\[H(X) \leq L(C) < H(X) + 1 \]

Use blocking to reduce the extra bit to an arbitrarily small amount.

- Arithmetic coding
Coding with the wrong probabilities

Say we use the wrong probabilities q_i to construct a code. Then

$$L(C_q) = - \sum_i p_i \log q_i$$

But

$$\sum_i p_i \log \frac{p_i}{q_i} > 0 \text{ if } q_i \neq p_i$$

$$\Rightarrow \quad L(C_q) - H(X) > 0$$

i.e. using the wrong probabilities increases the minimum attainable average code length.
So far we have discussed coding sequences if iid random variables. But, for example, the pixels in an image are not iid RVs. So what do we do?

Consider an image having N pixels, each of which can take on k grey-level values, as a single RV taking on k^N values. We would then need to estimate probabilities for all k^N different images in order to code a particular image properly, which is rather difficult for large k and N.

One solution is to chop images into blocks, e.g. 8×8 pixels, and code each block separately.
• Predictive encoding – try to predict the current pixel value given nearby context. Successful prediction reduces uncertainty.

\[H(X_1, X_2) = H(X_1) + H(X_2|X_1) \]
Rate-distortion theory

What happens if we can’t afford enough bits to code all of the symbols exactly? We must be prepared for lossy compression, when two different symbols are assigned the same code. In order to minimize the errors caused by this, we need a distortion function $d(x_i, x_j)$ which measures how much error is caused when symbol x_i codes for x_j.

The k-means algorithm is a method of choosing code book vectors so as to minimize the expected distortion for $d(x_i, x_j) = (x_i - x_j)^2$.
Patterns that we observe have a lot of structure, e.g. visual scenes that we care about don’t look like “snow” on the TV.

This gives rise to **redundancy**, i.e. that observing part of a scene will help us predict other parts.

This redundancy can be exploited to code the data efficiently—*loss less* compression.
Q: Why is coding so important?
A: Because of the lossless coding theorem: the best probabilistic model of the data will have the shortest code.
Source coding gives us a way of comparing and evaluating different models of data, and searching for good ones.
Usually we will build models with *hidden variables*— a new *representation* of the data.
Mutual information

\[I(X; Y) = KL(p(x, y), p(x)p(y)) \geq 0 \]
\[= \sum_{x,y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)} = I(Y; X) \]
\[= \sum_{x,y} p(x, y) \log \frac{p(x|y)}{p(x)} \]
\[= H(X) - H(X|Y) \]
\[= H(X) + H(Y) - H(X, Y) \]

- Mutual information is a measure of the amount of information that one RV contains about another. It is the reduction in uncertainty of one RV due to knowledge of the other.
- Zero mutual information if \(X \) and \(Y \) are independent
Example 1:

<table>
<thead>
<tr>
<th></th>
<th>Y<sub>1</sub></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>smoker</td>
<td>1/3</td>
<td>non</td>
</tr>
<tr>
<td>no lung cancer</td>
<td>0</td>
<td>smoker</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Y<sub>2</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>lung cancer</td>
<td>0</td>
</tr>
<tr>
<td>no lung cancer</td>
<td>2/3</td>
</tr>
</tbody>
</table>
Example 2:

\[
\begin{array}{c|cc}
\text{Y}_1 & \text{smoker} & \text{non smoker} \\
\text{lung cancer} & 1/9 & 2/9 \\
\text{Y}_2 & 2/9 & 4/9 \\
\text{no lung cancer} & & \\
\end{array}
\]
Continuous variables

\[I(Y_1; Y_2) = \int \int P(y_1, y_2) \log \frac{P(y_1, y_2)}{P(y_1)P(y_2)} \, dy_1 \, dy_2 = -\frac{1}{2} \log(1 - \rho^2) \]
Linsker, 1988, Principle of maximum information preservation
Consider a random variable $Y = a^T X + \epsilon$, with $a^T a = 1$. How do we maximize $I(Y; X)$?

$$I(Y; X) = H(Y) - H(Y|X)$$

But $H(Y|X)$ is just the entropy of the noise term ϵ. If X has a joint multivariate Gaussian distribution then Y will have a Gaussian distribution. The (differential) entropy of a Gaussian $N(\mu, \sigma^2)$ is $\frac{1}{2} \log 2\pi e \sigma^2$. Hence we maximize information preservation by choosing a to give Y maximum variance subject to the constraint $a^T a = 1$.

$19 / 20$
Channel capacity

The channel capacity of a discrete memoryless channel is defined as

$$C = \max_{p(x)} I(X; Y)$$

Noisy channel coding theorem
(Informal statement) Error free communication above the channel capacity is impossible; communication at bit rates below C is possible with arbitrarily small error.