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Overview

What is information theory?
Entropy
Coding
Rate-distortion theory
Mutual information
Channel capacity
Reading: Bishop §1.6
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Information Theory

Shannon (1948): Information theory is concerned with:

Source coding, reducing redundancy by modelling the structure
in the data

Channel coding, how to deal with “noisy” transmission

Key idea is prediction

Source coding: redundancy means predictability of the rest
of the data given part of it
Channel coding: Predict what we want given what we have
been given
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Information Theory Textbooks

Elements of Information Theory. T. M. Cover and J. A.
Thomas. Wiley, 1991. [comprehensive]
Coding and Information Theory. R. W. Hamming.
Prentice-Hall, 1980. [introductory]
Information Theory, Inference and Learning Algorithms
D. J. C. MacKay, CUP (2003), available online (viewing only)
http://www.inference.phy.cam.ac.uk/mackay/itila
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Entropy

A discrete random variable X takes on values from an alphabet
X , and has probability mass function P(x) = P(X = x) for
x ∈ X . The entropy H(X ) of X is defined as

H(X ) = −
∑
x∈X

P(x) log P(x)

convention: for P(x) = 0, 0× log 1/0 ≡ 0
The entropy measures the information content or “uncertainty”
of X .
Units: log2 ⇒ bits; loge ⇒ nats.
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Joint entropy, conditional entropy

H(X , Y ) = −
∑
x,y

P(x , y) log P(x , y)

H(Y |X ) =
∑

x

P(x)H(Y |X = x)

= −
∑

x

P(x)
∑

y

P(y |x) log P(y |x)

= −EP(x,y) log P(y |x)

H(X , Y ) = H(X ) + H(Y |X )

If X , Y are independent

H(X , Y ) = H(X ) + H(Y )
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Coding theory

A coding scheme C assigns a code C(x) to every symbol x ;
C(x) has length `(x). The expected code length L(C) of the
code is

L(C) =
∑
x∈X

p(x)`(x)

Theorem 1: Noiseless coding theorem
The expected length L(C) of any instantaneous code for X is
bounded below by H(X ), i.e.

L(C) ≥ H(X )

Theorem 2
There exists an instantaneous code such that

H(X ) ≤ L(C) < H(X ) + 1
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Practical coding methods

How can we come close to the lower bound ?

Huffman coding

H(X ) ≤ L(C) < H(X ) + 1

Use blocking to reduce the extra bit to an arbitrarily small
amount.
Arithmetic coding
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Coding with the wrong probabilities

Say we use the wrong probabilities qi to construct a code. Then

L(Cq) = −
∑

i

pi log qi

But ∑
i

pi log
pi

qi
> 0 if qi 6= pi

⇒
L(Cq)− H(X ) > 0

i.e. using the wrong probabilities increases the minimum
attainable average code length.
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Coding real data

So far we have discussed coding sequences if iid random
variables. But, for example, the pixels in an image are not
iid RVs. So what do we do ?
Consider an image having N pixels, each of which can take
on k grey-level values, as a single RV taking on kN values.
We would then need to estimate probabilities for all kN

different images in order to code a particular image
properly, which is rather difficult for large k and N.
One solution is to chop images into blocks, e.g. 8× 8
pixels, and code each block separately.
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• Predictive encoding – try to predict the current pixel value
given nearby context. Successful prediction reduces
uncertainty.

H(X1, X2) = H(X1) + H(X2|X1)
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Rate-distortion theory

What happens if we can’t afford enough bits to code all of the
symbols exactly ? We must be prepared for lossy compression,
when two different symbols are assigned the same code.
In order to minimize the errors caused by this, we need a
distortion function d(xi , xj) which measures how much error is
caused when symbol xi codes for xj .

x x xx

The k -means algorithm is a method of choosing code book
vectors so as to minimize the expected distortion for
d(xi , xj) = (xi − xj)

2
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Source coding

Patterns that we observe have a lot of structure, e.g. visual
scenes that we care about don’t look like “snow” on the TV
This gives rise to redundancy, i.e. that observing part of a
scene will help us predict other parts
This redundancy can be exploited to code the data
efficiently—loss less compression
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Q: Why is coding so important?
A: Because of the lossless coding theorem: the best
probabilistic model of the data will have the shortest code
Source coding gives us a way of comparing and evaluating
different models of data, and searching for good ones
Usually we will build models with hidden variables— a new
representation of the data
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Mutual information

I(X ; Y ) = KL(p(x , y), p(x)p(y)) ≥ 0

=
∑
x,y

p(x , y) log
p(x , y)

p(x)p(y)
= I(Y ; X )

=
∑
x,y

p(x , y) log
p(x |y)

p(x)

= H(X )− H(X |Y )

= H(X ) + H(Y )− H(X , Y )

Mutual information is a measure of the amount of information
that one RV contains about another. It is the reduction in
uncertainty of one RV due to knowledge of the other.

Zero mutual information if X and Y are independent
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Mutual Information

Example 1:
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• Example 2:

smoker smoker
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Continuous variables

I(Y1; Y2) =

∫ ∫
P(y1, y2) log

P(y1, y2)

P(y1)P(y2)
dy1 dy2 = −1

2
log(1− ρ2)
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PCA and mutual information

Linsker, 1988, Principle of maximum information preservation
Consider a random variable Y = aT X + ε, with aT a = 1.
How do we maximize I(Y ; X) ?

I(Y ; X) = H(Y )− H(Y |X)

But H(Y |X) is just the entropy of the noise term ε. If X has a
joint multivariate Gaussian distribution then Y will have a
Gaussian distribution. The (differential) entropy of a Gaussian
N(µ, σ2) is 1

2 log 2πeσ2. Hence we maximize information
preservation by choosing a to give Y maximum variance
subject to the constraint aT a = 1.
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Channel capacity

The channel capacity of a discrete memoryless channel is
defined as

C = max
p(x)

I(X ; Y )

Noisy channel coding theorem
(Informal statement) Error free communication above the
channel capacity is impossible; communication at bit rates
below C is possible with arbitrarily small error.
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