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Information Theory Information Theory Textbooks

Shannon (1948): Information theory is concerned with:

@ Source coding, reducing redundancy by modelling the structure @ Elements of Information Theory. T. M. Cover and J. A.
in the data Thomas. Wiley, 1991. [comprehensive]
@ Channel coding, how to deal with “noisy” transmission @ Coding and Information Theory. R. W. Hamming.

Prentice-Hall, 1980. [introductory]
@ Source coding: redundancy means predictability of the rest @ Information Theory, Inference anq Learnln.g Algprlthms
of the data given part of it D. J. C. MacKay, CUP (2003), available online (viewing only)

e Channel coding: Predict what we want given what we have http://www.inference.phy.cam.ac.uk/mackay/itila
been given

@ Key idea is prediction



Joint entropy, conditional entropy

A discrete random variable X takes on values from an alphabet H(X,Y) =
X, and has probability mass function P(x) = P(X = x) for
x € X. The entropy H(X) of X is defined as H(Y|X) =
H(X) == P(x)log P(x) =
xeX

convention: for P(x) =0,0 xlog1/0 =0
The entropy measures the information content or “uncertainty”

of X. If X, Y are independent
Units: log, = bits; log, = nats.

HX,Y) =

— > P(x,y)log P(x.y)
X,y

> P(X)H(Y|X = x)

=Y P(x)Y_ P(ylx)log P(y|x)
X y

—Ep(x,y)l0g P(y|x)
H(X) + H(Y|X)

H(X,Y) = H(X) + H(Y)

Coding theory Practical coding methods

A coding scheme C assigns a code C(x) to every symbol x;
C(x) has length ¢(x). The expected code length L(C) of the
code is

How can we come close to the lower bound ?
L(C) = p(x)(x)
X€X @ Huffman coding
Theorem 1: Noiseless coding theorem
The expected length L(C) of any instantaneous code for X is H(X) < L(C) < H(X) +1
bounded below by H(X), i.e. Use blocking to reduce the extra bit to an arbitrarily small

@ Arithmetic coding

Theorem 2
There exists an instantaneous code such that

H(X) < L(C) < H(X) +1
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Coding with the wrong probabilities

Say we use the wrong probabilities g; to construct a code. Then
L(Cq) == pilogqi
i

But D
Zpiloga’, >0 if g; # pi
- i
1

L(Cq) — H(X) >0

i.e. using the wrong probabilities increases the minimum
attainable average code length.

Coding real data

@ So far we have discussed coding sequences if iid random
variables. But, for example, the pixels in an image are not
iid RVs. So what do we do ?

@ Consider an image having N pixels, each of which can take
on k grey-level values, as a single RV taking on k" values.
We would then need to estimate probabilities for all kN
different images in order to code a particular image
properly, which is rather difficult for large k and N.

@ One solution is to chop images into blocks, e.g. 8 x 8
pixels, and code each block separately.
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Rate-distortion theory

¢ Predictive encoding — try to predict the current pixel value
given nearby context. Successful prediction reduces
uncertainty.

H(Xy, X2) = H(X1) + H(X2|X4)
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What happens if we can’t afford enough bits to code all of the
symbols exactly ? We must be prepared for lossy compression,
when two different symbols are assigned the same code.

In order to minimize the errors caused by this, we need a
distortion function d(x;, x;) which measures how much error is
caused when symbol x; codes for x;.

The k-means algorithm is a method of choosing code book
vectors so as to minimize the expected distortion for
d(x, x;) = (X — X))
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Source coding

@ Patterns that we observe have a lot of structure, e.g. visual
scenes that we care about don’t look like “snow” on the TV

@ This gives rise to redundancy, i.e. that observing part of a ® Q: Why is coding so important?

scene will help us predict other parts @ A: Because of the lossless coding theorem: the best
@ This redundancy can be exploited to code the data probabilistic model of the data will have the shortest code
efficiently—loss less compression @ Source coding gives us a way of comparing and evaluating

different models of data, and searching for good ones

@ Usually we will build models with hidden variables— a new
representation of the data
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Mutual information Mutual Information

I(X;Y) = KL(p(x,y),p(x)p(y)) =0 @ Example 1:
- Zp(x,y)logM:/(Y;X) Y,
X,y p(X non
(x1y) smoker  smoker

= H(X) - H(X|Y) lung

= H(X)+H(Y)—H(X,Y) cancer | 13 0

@ Mutual information is a measure of the amount of information no lung 0 /3
that one RV contains about another. It is the reduction in cancer
uncertainty of one RV due to knowledge of the other.

@ Zero mutual information if X and Y are independent
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Continuous variables

e Example 2:

Y,
non
smoker smoker

'ung 1/9 2/9

cancer
Y,

no lung

cancer 2/9 4/9

P(y1, 1
0¥ ¥2) = [ [ P yedlog e 1) dy o = 5 1ogi(1 — 42)
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PCA and mutual information Channel capacity

Linsker, 1988, Principle of maximum information preservation
Consider a random variable Y =a’X + ¢, witha’a = 1.

How do we maximize I(Y: X) ? The channel capacity of a discrete memoryless channel is

defined as
I(Y;X) = H(Y) — H(Y|X) C= rg(%(/(x; Y)
But H(Y|X) is just the entropy of the noise term e. If X has a Noisy channel coding theorem o
joint multivariate Gaussian distribution then Y will have a (Informal statement) Error free communication above the
Gaussian distribution. The (differential) entropy of a Gaussian channel QapaCIty IS Injpossple; gommumcahon at bit rates
N(u,0?) is %Iog 2red?. Hence we maximize information below C is possible with arbitrarily small error.

preservation by choosing a to give Y maximum variance
subject to the constrainta’a = 1.
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