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Overview

I Independence

I Conditional Independence

I Belief networks

I Constructing belief networks

I Inference in belief networks

I Learning in belief networks

I Readings: e.g. Bishop §8.1 (not 8.1.1 nor 8.1.4), §8.2, Russell
and Norvig, §15.1, §15.2, §15.5, Jordan handout §2.1 (details of
Bayes ball algorithm not examinable)
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Independence

I Let X and Y be two disjoint subsets of variables. Then X is said
to be independent of Y if and only if

P(X|Y) = P(X)

for all possible values x and y of X and Y; otherwise X is said to
be dependent on Y

I Using the definition of conditional probability, we get an
equivalent expression for the independence condition

P(X,Y) = P(X)P(Y)

I X independent of Y⇔ Y independent of X

I Independence of a set of variables. X1, . . . . ,Xn are independent
iff

P(X1, . . . ,Xn) =
n∏

i=1

P(Xi)

3 / 24

Example for Independence Testing

Toothache = true Toothache = false
Cavity = true 0.04 0.06
Cavity = false 0.01 0.89

• Is Toothache independent of Cavity ?
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Conditional Independence

I Let X, Y and Z be three disjoint sets of variables. X is said
to be conditionally independent of Y given Z iff

P(x|y, z) = P(x|z)

for all possible values of x, y and z.
I Equivalently P(x,y|z) = P(x|z)P(y|z)

I Notation, I(X,Y|Z)
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Belief Networks

I A simple, graphical notation for conditional independence
assertions and hence for compact specification of full joint
distributions

I Syntax:
I a set of nodes, one per variable
I a directed acyclic graph (DAG) (link ≈ “directly influences”)
I a conditional distribution for each node given its parents:

P(Xi |Parents(Xi))

I In the simplest case, conditional distribution represented
as a conditional probability table (CPT)

6 / 24

Belief Networks 2

I DAG⇒ no directed cycles⇒ can number nodes so that no
edges go from a node to another node with a lower number

I Joint distribution

P(X1, . . . ,Xn) =
n∏

i=1

P(Xi |Parents(Xi))

I Missing links imply conditional independence
I Ancestral simulation to sample from joint distribution
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Graphical example

Y

X

Y

Z Z

X

I LHS: No independence
P(X ,Y ,Z ) = P(Z )P(Y |Z )P(X |Y ,Z )

I RHS: P(X ,Y ,Z ) = P(Z )P(Y |Z )P(X |Z ), with I(X,Y|Z)

I Note: there are other graphical structures that imply
I(X,Y|Z)
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Example Belief Network

Gauge

Fuel

Turn Over

Battery

Start

Heckerman (1995)

P(f=empty) = 0.05P(b=bad) = 0.02

P(t=no|b=bad) = 0.98
P(t=no|b=good) = 0.03

P(g=empty|b=good, f=not empty) = 0.04
P(g=empty| b=good, f=empty) = 0.97
P(g=empty| b=bad, f=not empty) = 0.10
P(g=empty|b=bad, f=empty) = 0.99

P(s=no|t=yes, f=not empty) = 0.01
P(s=no|t=yes, f=empty) = 0.92
P(s=no| t = no, f=not empty) = 1.0
P(s=no| t = no, f = empty) = 1.0

9 / 24

I Unstructured joint distribution requires 25 − 1 = 31
numbers to specify it. Here can use 12 numbers

I Take the ordering b, f ,g, t , s. Joint can be expressed as

P(b, f ,g, t , s) = P(b)P(f |b)P(g|b, f )P(t |b, f ,g)P(s|b, f ,g, t)

I Conditional independences (missing links) give

P(b, f ,g, t , s) = P(b)P(f )P(g|b, f )P(t |b)P(s|t , f )
I What is probability of

P(b = good , t = no,g = empty , f = not empty , s = no)?
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Constructing belief networks

1. Choose a relevant set of variables Xi that describe the
domain

2. Choose an ordering for the variables
3. While there are variables left

(a) Pick a variable Xi and add it to the network
(b) Set Parents(Xi) to some minimal set of nodes

already in the net
(c) Define the CPT for Xi
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I This procedure is guaranteed to produce a DAG
I To ensure maximum sparsity, add “root causes” first, then

the variables they influence and so on, until leaves are
reached. Leaves have no direct causal influence over other
variables

I Example: Construct DAG for the car example using the
ordering s, t ,g, f ,b

I “Wrong” ordering will give same joint distribution, but will
require the specification of more numbers than otherwise
necessary
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Defining CPTs

I Where do the numbers come from? Can be elicited from
experts, or learned, see later

I CPTs can still be very large (and difficult to specify) if there
are many parents for a node. Can use combination rules
such as Pearl’s (1988) NOISY-OR model for binary nodes
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Conditional independence relations in belief networks

I Consider three disjoint groups of nodes, X, Y, E
I Q: Given a graphical model, how can we tell if I(X,Y|E)?
I A: we use a test called direction-dependent separation or

d-separation
I If every undirected path from X to Y is blocked by E, then

I(X,Y|E)
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Defining blocked

A

C

B A B

C

A

C

B

C is head-to-head C is tail-to-tail C is head-to-tail

A path is blocked if

1. there is a node ω ∈ E which is head-to-tail wrt the path

2. there is a node ω ∈ E which is tail-to-tail wrt the path

3. there is a node that is head-to-head and neither the node, nor
any of its descendants, are in E
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Motivation for blocking rules

I Head-to-head I(a,b|∅)

p(a,b, c) = p(a)p(b)p(c|a,b)

p(a,b) = p(a)p(b)
∑

c

p(c|a,b) = p(a)p(b)

I Tail-to-tail I(a,b|c)

p(a,b, c) = p(c)p(a|c)p(b|c)

p(a,b|c) = p(a,b, c)/p(c) = p(a|c)p(b|c)

I Head-to-tail I(a,b|c)

p(a,b, c) = p(a)p(c|a)p(b|c)

p(a,b|c) = p(a,b, c)/p(c) = p(a, c)p(b|c)/p(c) = p(a|c)p(b|c)
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Example

I I(t , f |∅) ?
I I(b, f |s) ?
I I(b, s|t) ?

Gauge

Fuel

Turn Over

Battery

Start

Heckerman (1995)

P(f=empty) = 0.05P(b=bad) = 0.02

P(t=no|b=bad) = 0.98
P(t=no|b=good) = 0.03

P(g=empty|b=good, f=not empty) = 0.04
P(g=empty| b=good, f=empty) = 0.97
P(g=empty| b=bad, f=not empty) = 0.10
P(g=empty|b=bad, f=empty) = 0.99

P(s=no|t=yes, f=not empty) = 0.01
P(s=no|t=yes, f=empty) = 0.92
P(s=no| t = no, f=not empty) = 1.0
P(s=no| t = no, f = empty) = 1.0
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The Bayes Ball Algorithm

I §2.1 in Jordan handout (2003)
I Paper “Bayes-Ball: The Rational Pastime” by R. D.

Shachter (UAI 98)
I Provides an algorithm with linear time complexity which

given sets of nodes X and E, determines the set of nodes
Y s.t.

I(X,Y|E)

I Y is called the set of irrelevant nodes for X given E
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Inference in belief networks

I Inference is the computation of results to queries given a
network in the presence of evidence

I e.g. All/specific marginal posteriors e.g. P(b|s)

I e.g. Specific joint conditional queries e.g. P(b, f |t), or
finding the most likely explanation given the evidence

I In general networks inference is NP-hard (loops cause
problems)
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Some common methods
I For tree-structured networks inference can be done in time

linear in the number of nodes (Pearl, 1986). λ messages
are passed up the tree and π messages are passed down.
All the necessary computations can be carried out locally.
HMMs (chains) are a special case of trees. Pearl’s method
also applies to polytrees (DAGS with no undirected cycles)

I Variable elimination (see Jordan handout, ch 3)
I Clustering of nodes to yield a tree of cliques (junction tree)

(Lauritzen and Spiegelhalter, 1988); see Jordan handout
ch 17

I Symbolic probabilistic inference (D’Ambrosio, 1991)
I There are also approximate inference methods, e.g. using

stochastic sampling or variational methods
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Inference Example

HolmesWatson

Rain Sprinkler

P(s=yes) = 0.1P(r=yes) = 0.2

P(w=yes|r=yes) = 1
P(w=yes|r=no) = 0.2

P(h=yes|r=yes, s=yes) = 1.0
P(h=yes|r=yes, s= no) = 1.0
P(h=yes|r=no, s=yes) = 0.9
P(h=yes|r=no, s=no) = 0.0
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I Mr. Holmes lives in Los Angeles. One morning when
Holmes leaves his house, he realizes that his grass is wet.
Is it due to rain, or has he forgotten to turn off his sprinkler?

I Calculate P(r |h), P(s|h) and compare these values to the
prior probabilities

I Calculate P(r , s|h). r and s are marginally independent,
but conditionally dependent

I Holmes checks Watson’s grass, and finds it is also wet.
Calculate P(r |h,w), P(s|h,w)

I This effect is called explaining away
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Learning in belief networks

I General problem: learning probability models
I Learning CPTs; easier. Especially easy if all variables are

observed, otherwise can use EM
I Learning structure; harder. Can try out a number of

different structures, but there can be a huge number of
structures to search through

I Say more about this later
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I J. Pearl “Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference”, Morgan Kaufmann, 1988

I E. Castillo, J. M. Gutiérrez, A. S. Hadi “Expert Systems and
Probabilistic Network Models”, Springer, 1997

I S. J. Russell and P. Norvig, “Artificial Intelligence: A Modern
Approach”, Prentice Hall, 1995 (chapters 14, 15)

I F. V. Jensen, “An introduction to Bayesian networks”, UCL Press,
1996

I D. Koller and N. Friedman, “Probabilistic Graphical Models:
Principles and Techniques”, MIT Press, 2009
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