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Overview

@ Introduction to Bayesian Statistics: Learning a Probability
@ Learning the mean of a Gaussian

@ Readings: Bishop §2.1 (Beta), §2.2 (Dirichlet), §2.3.6
(Gaussian), Heckerman tutorial section 2



Bayesian vs Frequentist Inference

Frequentist
@ Assumes that there is an unknown but fixed parameter ¢
@ Estimates 6 with some confidence

@ Prediction by using the estimated parameter value

Bayesian
@ Represents uncertainty about the unknown parameter

@ Uses probability to quantify this uncertainty. Unknown
parameters as random variables

@ Prediction follows rules of probability



Frequentist method

@ Model p(x|0, M), data D = {X1,...,Xn}

0 = argmax, p(D|0, M)

@ Prediction for x,,, 1 is based on p(X,1|9, M)



Bayesian method

@ Prior distribution p(6|M)
@ Posterior distribution p(6|D, M)

p(6|D, M) = P(D!Za( g")l\x;()mM)

@ Making predictions
P(e-1|D,M) = [ plxos1.61D. M) d
— [ px116. D. M)p(6ID. M)

— [ p(xe.116. M)p(61D. M) ol

Interpretation: average of predictions p(X,.1/0, M)
weighted by p(6|D, M)
@ Marginal likelihood (important for model comparison)



Bayes, MAP and Maximum Likelihood

(1 D.M) = [ P, M)p(61D. M)

@ Maximum a posteriori value of ¢
Omap = argmax, p(6|D, M)

Note: not invariant to reparameterization (cf ML estimator)

@ [f posterior is sharply peaked about the most probable value
Omap then
P(Xni1|D, M) =~ p(Xni1]0map, M)

@ In the limit n — oo, Oap converges to A (as long as p(d) # 0)

@ Bayesian approach most effective when data is limited, nis small



Learning probabilities: thumbtack example

Frequentist Approach

@ The probability of heads

0 is unknown heads talls

@ Given iid data, estimate
f using an estimator ( ‘
with good properties '
(e.g. ML estimator)




Likelihood

@ Likelihood for a sequence of heads and tails
p(hhth ... tth|0) = 6™ (1 — o)™

e MLE -

Np+ Nt

0=




Learning probabilities: thumbtack example

Bayesian Approach: (a) the prior
@ Prior density p(6), use beta distribution

p(0) = Beta(ap, ) o< 40~ 1(1 — g)x 1

for ap,ar > 0
@ Properties of the beta distribution

El6] = /Hp ap —|— Qi




Examples of the Beta distribution

Beta(0.5,0.5) Beta(1,1)

A\

Beta(15,10)

Beta(3,2)
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Bayesian Approach: (b) the posterior

p(6]|D) o< p(0)p(D]0)
o 0o~ 1(1 — g) =19 (1 — g)™
x 90"’+nh_1(1 _ 9)af+n‘_1

@ Posterior is also a Beta distribution ~ Beta(ap + np, at + ;)

@ The Beta prior is conjugate to the binomial likelihood (i.e.
they have the same parametric form)

@ «ay and ay can be thought of as imaginary counts, with
a = ap + ar as the equivalent sample size
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Bayesian Approach: (c) making predictions

™

OGNS

P(Xys1 = heads|D, M) / Dp(Xns1 = heads|6)p(6]D, M) d

- / 0 Beta((an + M, g + 1) O

_ap+ Dy
a+n
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Beyond Conjugate Priors

@ The thumbtack came from a magic shop — a mixture prior

p(0) = 0.4Beta(20, 0.5) + 0.2Beta(2,2) + 0.4Beta(0.5,20)
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Generalization to multinomial variables

@ Dirichlet prior
r
,0(91,...,9,) = DiI‘(Oq,...,og,) x Hgiai—1
i=1

with

ZQ,‘:‘I, Oé,'>0
i

@ «/’s are imaginary counts, o = ), «j is equivalent sample
size

@ Properties

o

E(0;) =

@ Dirichlet distribution is conjugate to the multinomial
likelihood
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@ Posterior distribution
,
pOlny, ..., ne) oc [T 05
i=1

@ Marginal likelihood

p
ra,—i—n,
(D’M a—i—nH

i=1
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Inferring the mean of a Gaussian

@ Likelihood
p(x|u) ~ N(p, 0?)
@ Prior
p(1) ~ N(po, o5)
@ Givendata D = {xq,...,Xxn}, whatis p(u|D)?
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with

@ See Bishop §2.3.6 for details
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Comparing Bayesian and Frequentist approaches

@ Frequentist: fix 0, consider all possible data sets
generated with 6 fixed

@ Bayesian: fix D, consider all possible values of §

@ One view is that Bayesian and Frequentist approaches
have different definitions of what it means to be a good
estimator
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