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Bayesian vs Frequentist Inference Frequentist method

Frequentist
@ Assumes that there is an unknown but fixed parameter 6

@ Estimates 6 with some confidence
@ Model p(x|0, M), data D = {x4,...,Xn}
@ Prediction by using the estimated parameter value
0 = argmax, p(D|6, M)

Bayesian f b g 7
@ Prediction for x,,, 1 is based on p(x,.16,
@ Represents uncertainty about the unknown parameter n P )
@ Uses probability to quantify this uncertainty. Unknown

parameters as random variables

@ Prediction follows rules of probability



Bayesian method

@ Prior distribution p(6|M)

@ Posterior distribution p(6|D, M)

p(6|D, M) =

@ Making predictions

p(D|6, M)p(6|M)

p(DIM)

p(n.11D.M) = [ plxos1,61D. M) ol

- / p(Xn.116, D, M)p(8] D, M) d

- / p(Xn.110, M)p(6]D, M) df

Interpretation: average of predictions p(X,.1]0, M)

weighted by p(0|D, M)

@ Marginal likelihood (important for model comparison)
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Bayes, MAP and Maximum Likelihood

(1 D.M) = [ P16, M)P(6ID. M) Y

@ Maximum a posteriori value of 0
Omap = argmax, p(6|D, M)

Note: not invariant to reparameterization (cf ML estimator)

@ [f posterior is sharply peaked about the most probable value
eMAP then
P(Xn11|D, M) ~ p(Xni1|0map, M)

@ In the limit n — oo, Oap converges to d (as long as p(d) # 0)

@ Bayesian approach most effective when data is limited, nis small

Likelihood

Learning probabilities: thumbtack example

Frequentist Approach

@ The probability of heads
0 is unknown

@ Given iid data, estimate
# using an estimator
with good properties
(e.g. ML estimator)

heads

<

tals
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@ Likelihood for a sequence of heads and tails
p(hhth ... tth|0) = 0™ (1 — O)™

e MLE -

Np + Ny

0 =




Learning probabilities: thumbtack example

Bayesian Approach: (a) the prior
@ Prior density p(#), use beta distribution

p(0) = Beta(ap, ag) oc 02~ 1 (1 — g)*—1

for ap,ap >0
@ Properties of the beta distribution

Qp
ap + o

Emz/wwz
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Examples of the Beta distribution

Beta(0.5,0.5)

Beta(1,1)

Beta(3,2) Beta(15,10)

Bayesian Approach: (b) the posterior

p(9]D) x p(0)p(DI9)
o 9T (1 = g) ™9™ (1
o eah+nh—1 (1 _ 9)0&(-%”{-1

_ 0)”1‘

@ Posterior is also a Beta distribution ~ Beta(ayp, + np, ot + ny)

@ The Beta prior is conjugate to the binomial likelihood (i.e.
they have the same parametric form)

@ ay and a; can be thought of as imaginary counts, with
a = ap + oy as the equivalent sample size
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Bayesian Approach: (c) making predictions

ORI

(X1 = heads|D, M) = / (X1 = heads|0)p(0|D, M) do

= /9 Beta((ah + np, o + n,) o[

_ap+ Ny
a+n
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Beyond Conjugate Priors Generalization to multinomial variables

@ Dirichlet prior

p(64,...,0;) =Dir(ay,...,« ocH@a’

@ The thumbtack came from a magic shop — a mixture prior with

29/21, a; >0
i

@ «oj’s are imaginary counts, a = ), «; is equivalent sample
size
@ Properties

p(0) = 0.4Beta(20,0.5) + 0.2Beta(2, 2) + 0.4Beta(0.5, 20)

@ Dirichlet distribution is conjugate to the multinomial
likelihood
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Inferring the mean of a Gaussian

@ Posterior distribution

)
p(OIm.....mr) o [T 6" o Likelihood
. p(x|u) ~ Ny, %)

@ Marginal likelihood @ Prior

p(n) ~ N(uo, o5)
@ Givendata D = {xy,...,Xn}, whatis p(u|D)?

,
I'oz+n
DM: ! )
pP(D|M) a+n ,l_!
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Comparing Bayesian and Frequentist approaches

with
1
X = — Xj
n-

i=1

no§ o2
Hn = Ho
nUS + o2 no? + o2

1 n n 1
2 2 52

@ See Bishop §2.3.6 for details
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@ Frequentist: fix 9, consider all possible data sets
generated with 6 fixed

@ Bayesian: fix D, consider all possible values of 6

@ One view is that Bayesian and Frequentist approaches
have different definitions of what it means to be a good
estimator



