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@ Bayesian Learning of CPTs

@ Dealing with Multiple Models

@ Other Scores for Model Comparison

@ Searching over Belief Network structures

@ Readings: Bishop §3.4, Heckerman tutorial sections 1, 2,
3,4,5,7,81, 11

Learning in Belief Networks

Known Structure | Unknown Structure
Complete Statistical Discrete search
Data parameter over structures
estimation
Incomplete EM, stochastic Combined search
Data sampling methods over structures
and parameters

(Friedman and Goldszmidt, 1998)

@ Data + prior/expert beliefs = Belief networks

Bayesian Learning with Complete Data

@ Belief network with m nodes, xi, ..., Xm, parameters 6

@ Log likelihood

n
L(®;D) = logp(xi,...,x.|6
i
i=1

n m ) )
=> > logp(x|pal, 6))

i=1 j=1

@ The likelihood decomposes according to the structure of the
network

@ = independent estimation problems for MLE



@ If priors for each CPT are independent, so are posteriors
@ Posterior for each multinomial CPT P(X;|Pa;) is Dirichlet

with parameters ( : @
a(X; = 1|pg) + n(X; = 1|pg)), ..

(X = f|Pa/) + n(Xj = r|pag) o Parameters 0y, fy|x

Dealing with Multiple Models

\ / @ Let M index possible model structures, with associated

@ parameters 0y,
%) p(M|D) x p(D|M)p(M)
%@ @ For complete data (plus some other assumptions) the marginal

] ] likelihood p(D|M) can be computed in closed form

@ Read off from network: complete data = posteriors for
x and dy|x are independent = Zp(M\D) /p(x,,+1 |Om, M)p(6m|D, M) d6y
@ Reduces to 3 separate thumbtack-learning problems M

@ Making predictions

P(Xn:1]D) = ZpM\ P(Xni1|M, D)

@ Can approximate ) -,, by keeping the best or the top few models



Comparing models

P(D|M;)

Bayes factor = ————=
g P(D|Me)

P(Mi|D) — P(M:y) P(D|M)
P(Mo|D) — P(Mz) P(D|M,)

Posterior ratio = Prior ratio x Bayes factor

Strength of evidence from Bayes factor (Kass, 1995; after Jeffreys,
1961)

1t03 Not worth more than a bare mention
3to 20 Positive

20 to 150 Strong

> 150 Very strong

General form of P(D|M) for a discrete belief network
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where
@ nji is the number of cases where X; = x¥ and Pa; = paf
@ r; is the number of states of X;

@ q; is the number of configurations of the parents of X;

fi Ti
Qjj = E Qjik n; = E Njjk
k=1 k=1

Formula due to Cooper and Herskovits (1992)

Simply the product of the thumbtack result over all nodes and
states of the parents
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Computing P(D|M)

e For the thumbtack example

r
(D|M Hra,;—n,

a+n

i=1

e The graph —() corresponds to 3 separate thumbtack
problems for X, Y|X = heads and Y|X = tails

Computation of Marginal Likelihood

Efficient closed form if

@ No missing data or hidden variables
@ Parameters are independent in prior

@ Local distributions are in the exponential family (e.g.
multinomial, Gaussian, Poisson, ..

@ Conjugate priors are used

)

I
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Given data D, compare the two models

model 1 @ @
model 2 %@

Counts: hh =6, ht = 2, th = 8, tt = 4, from marginal probabilities
P(X=h)=04and P(Y =h)=0.7

Bayes factor = % = 1.97 in favour of model 1

Log Likelihood criterion favours model 2
log L(M1) — log L(M2) = —0.08
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@ Another view (for a single parameter 0)
POM) = [ p(DIo. M)p(s|)ap

~ p(DJ6*, M)p(6"| M)A
. A
@ This last term is known as an Occam factor
@ The analysis can be extended to multidimensional 8. Pay
an Occam factor on each dimension if parameters are
well-determined by data; thus models with more

parameters can be penalized more
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How Bayesian model comparison works

@ Consider three models M;, M, and M5 which are under complex,
just right and over complex for a particular dataset D*

@ Note that P(D|M;) must be normalized

ﬂp(mm )
POM )

i o)

@ Warning: it can make sense to use a model with an infinite
number of parameters (but in a way that the prior is “nice”)
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Other scores for comparing models

Above we have used P(D|M) to score models. Other ideas include
@ Maximum likelihood

L(M; D) = max L(6u, M; D)
M

@ Bad choice: adding arcs always helps

@ Example from supervised learning
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Searching over structures

@ Penalize More Complex Models: e.g. AIC (Akaike
Information Criterion), BIC (Bayesian Information
Criterion), Structural Risk Minimization (penalize

hypothesis classes based on their VC dimension). BIC can @ Number of possible structures over m variables is
be seen as large n approximation ot full Bayesian method. super-exponential in m
@ Minimum description length: (Rissanen, Wallace) @ Finding the BN with the highest marginal likelihood among
closely related to Bayesian method those structures with at most k parents is NP-hard if k > 1
@ Restrict the hypothesis space to limit the capability for (Chickering, 1995)
overfitting: but how much? @ Note: efficient search over trees
@ Holdout/Cross-validation: validate generalization on data @ Otherwise, use heuristic methods such as greedy search

withheld during training—but this “wastes” data . . .
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Greedy search Example

College plans of high-school seniors (Heckerman, 1995/6).

Variables are

initialize
structure @ Sex: male, female

1 @ Socioeconomic status: low, low mid, high mid, high
i,‘;ﬁﬁ; perform @ 1Q: low, low mid, high mid, high
single changes change @ Parental encouragement: low, high
@ College plans: yes, no
~ ves Priors

@ Structural prior: SEX has no parents, CP has no children,
otherwise uniform

return
best structure

@ Parameter prior: Uniform distributions
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Best network found

@ Acknowledgements: this presentation has been greatly aided by the
A tutorials by Nir Friedman and Moises Goldszmidt

@ http://www.erg.sri.com/people/moises/tutorial/index.htm
\ ans David Heckerman

http://research.microsoft.com/~heckerman/

Al

@ Odd that SES has a direct link to 1Q: suggests that a hidden
variable is needed

@ Searching over structures for visible variables is hard; inferring
hidden structure is even harder...
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