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Overview

Bayesian Learning of CPTs
Dealing with Multiple Models
Other Scores for Model Comparison
Searching over Belief Network structures
Readings: Bishop §3.4, Heckerman tutorial sections 1, 2,
3, 4, 5, 7, 8.1, 11
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Learning in Belief Networks

Known Structure Unknown Structure
Complete Statistical Discrete search

Data parameter over structures
estimation

Incomplete EM, stochastic Combined search
Data sampling methods over structures

and parameters

(Friedman and Goldszmidt, 1998)

Data + prior/expert beliefs ⇒ Belief networks
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Bayesian Learning with Complete Data

Belief network with m nodes, x1, . . . , xm, parameters θ

Log likelihood

L(θ; D) =
n∑

i=1

log p(x i
1, . . . , x i

m|θ)

=
n∑

i=1

m∑
j=1

log p(x i
j |pai

j , θj)

The likelihood decomposes according to the structure of the
network

⇒ independent estimation problems for MLE
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If priors for each CPT are independent, so are posteriors
Posterior for each multinomial CPT P(Xj |Paj) is Dirichlet
with parameters

α(Xj = 1|paj) + n(Xj = 1|paj), . . . ,

, α(Xj = r |paj) + n(Xj = r |paj)
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Example: X → Y

X Y

Parameters θX , θY |X
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Read off from network: complete data =⇒ posteriors for
θX and θY |X are independent
Reduces to 3 separate thumbtack-learning problems
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Dealing with Multiple Models

Let M index possible model structures, with associated
parameters θM

p(M|D) ∝ p(D|M)p(M)

For complete data (plus some other assumptions) the marginal
likelihood p(D|M) can be computed in closed form

Making predictions

p(xn+1|D) =
∑

M

p(M|D)p(xn+1|M, D)

=
∑

M

p(M|D)

∫
p(xn+1|θM , M)p(θM |D, M) dθM

Can approximate
∑

M by keeping the best or the top few models
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Comparing models

Bayes factor =
P(D|M1)

P(D|M2)

P(M1|D)

P(M2|D)
=

P(M1)

P(M2)
.
P(D|M1)

P(D|M2)

Posterior ratio = Prior ratio× Bayes factor

Strength of evidence from Bayes factor (Kass, 1995; after Jeffreys,
1961)

1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
> 150 Very strong
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Computing P(D|M)

• For the thumbtack example

p(D|M) =
Γ(α)

Γ(α + n)

r∏
i=1

Γ(αi + ni)

Γ(αi)

• The graph X Y corresponds to 3 separate thumbtack
problems for X , Y |X = heads and Y |X = tails
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General form of P(D|M) for a discrete belief network

p(D|M) =
m∏

i=1

qi∏
j=1

Γ(αij)

Γ(αij + nij)

ri∏
k=1

Γ(αijk + nijk )

Γ(αijk )

where

nijk is the number of cases where Xi = xk
i and Pai = paj

i

ri is the number of states of Xi

qi is the number of configurations of the parents of Xi

αij =

ri∑
k=1

αijk nij =

ri∑
k=1

nijk

Formula due to Cooper and Herskovits (1992)

Simply the product of the thumbtack result over all nodes and
states of the parents
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Computation of Marginal Likelihood

Efficient closed form if
No missing data or hidden variables
Parameters are independent in prior
Local distributions are in the exponential family (e.g.
multinomial, Gaussian, Poisson, ...)
Conjugate priors are used
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Example

Given data D, compare the two models

Y

YX

Xmodel 1

model 2

Counts: hh = 6, ht = 2, th = 8, tt = 4, from marginal probabilities
P(X = h) = 0.4 and P(Y = h) = 0.7
Bayes factor = P(D|M1)

P(D|M2)
= 1.97 in favour of model 1

Log Likelihood criterion favours model 2
log L(M1)− log L(M2) = −0.08
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How Bayesian model comparison works

Consider three models M1, M2 and M3 which are under complex,
just right and over complex for a particular dataset D∗

Note that P(D|Mi) must be normalized

D

1

2

3

*

P(D|M

P(D|M

P(D|M

)

)

)

Warning: it can make sense to use a model with an infinite
number of parameters (but in a way that the prior is “nice”)
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θ*

∆

∆

0

Another view (for a single parameter θ)

P(D|Mi) =

∫
p(D|θ, Mi)p(θ|Mi)dθ

' p(D|θ∗, Mi)p(θ∗|Mi)∆

' p(D|θ∗, Mi)
∆

∆0

This last term is known as an Occam factor
The analysis can be extended to multidimensional θ. Pay
an Occam factor on each dimension if parameters are
well-determined by data; thus models with more
parameters can be penalized more
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Other scores for comparing models

Above we have used P(D|M) to score models. Other ideas include

Maximum likelihood

L(M; D) = max
θM

L(θM , M; D)

Bad choice: adding arcs always helps

Example from supervised learning
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Penalize More Complex Models: e.g. AIC (Akaike
Information Criterion), BIC (Bayesian Information
Criterion), Structural Risk Minimization (penalize
hypothesis classes based on their VC dimension). BIC can
be seen as large n approximation ot full Bayesian method.
Minimum description length: (Rissanen, Wallace)
closely related to Bayesian method
Restrict the hypothesis space to limit the capability for
overfitting: but how much?
Holdout/Cross-validation: validate generalization on data
withheld during training—but this “wastes” data . . .
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Searching over structures

Number of possible structures over m variables is
super-exponential in m
Finding the BN with the highest marginal likelihood among
those structures with at most k parents is NP-hard if k > 1
(Chickering, 1995)
Note: efficient search over trees
Otherwise, use heuristic methods such as greedy search
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Greedy search

initialize
structure

score all
possible

single changes

any 
changes
better?

perform 
best

change

yes

no

return
best structure
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Example

College plans of high-school seniors (Heckerman, 1995/6).

Variables are

Sex: male, female

Socioeconomic status: low, low mid, high mid, high

IQ: low, low mid, high mid, high

Parental encouragement: low, high

College plans: yes, no

Priors

Structural prior: SEX has no parents, CP has no children,
otherwise uniform

Parameter prior: Uniform distributions
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Best network found

SEX

PE

IQ

SES

CP

Odd that SES has a direct link to IQ: suggests that a hidden
variable is needed

Searching over structures for visible variables is hard; inferring
hidden structure is even harder...
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