Overview

Bayesian Model Selection

Chris Williams
School of Informatics, University of Edinburgh
November 2008

1 / 22

Bayesian Learning of CPTs
Dealing with Multiple Models
Other Scores for Model Comparison
Searching over Belief Network structures
Readings: Bishop §3.4, Heckerman tutorial sections 1, 2, 3, 4, 5, 7, 8.1, 11

2 / 22

Learning in Belief Networks

<table>
<thead>
<tr>
<th>Known Structure</th>
<th>Unknown Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Data</td>
<td>Statistical parameter estimation</td>
</tr>
<tr>
<td></td>
<td>Discrete search over structures</td>
</tr>
<tr>
<td>Incomplete Data</td>
<td>EM, stochastic sampling methods</td>
</tr>
<tr>
<td></td>
<td>Combined search over structures and parameters</td>
</tr>
</tbody>
</table>

(Friedman and Goldszmidt, 1998)

- Data + prior/expert beliefs ⇒ Belief networks

3 / 22

Bayesian Learning with Complete Data

- Belief network with m nodes, x_1, \ldots, x_m, parameters θ
- Log likelihood

$$L(\theta; D) = \sum_{i=1}^{n} \log p(x_{i1}, \ldots, x_{im}|\theta)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \log p(x_{ij}|pa_i, \theta_j)$$

- The likelihood decomposes according to the structure of the network
- ⇒ independent estimation problems for MLE

4 / 22
If priors for each CPT are independent, so are posteriors.
Posterior for each multinomial CPT $P(X_j | P_{aj})$ is Dirichlet
with parameters
\[\alpha(X_j = 1 | P_{aj}) + n(X_j = 1 | P_{aj}), \ldots, \alpha(X_j = r | P_{aj}) + n(X_j = r | P_{aj}) \]

Example: $X \rightarrow Y$
Parameters $\theta_X, \theta_{Y|X}$

Dealing with Multiple Models

Let M index possible model structures, with associated
parameters θ_M
\[p(M | D) \propto p(D | M) p(M) \]

For complete data (plus some other assumptions) the marginal
likelihood $p(D | M)$ can be computed in closed form

Making predictions
\[p(x_{n+1} | D) = \sum_M p(M | D) p(x_{n+1} | M, D) = \sum_M p(M | D) \int p(x_{n+1} | \theta_M, M) p(\theta_M | D, M) d\theta_M \]

Can approximate \sum_M by keeping the best or the top few models
Comparing models

Bayes factor

\[
\frac{P(D|M_1)}{P(D|M_2)} = \frac{P(M_1)}{P(M_2)} \frac{P(D|M_1)}{P(D|M_2)}
\]

Posterior ratio = Prior ratio \times Bayes factor

Strength of evidence from Bayes factor (Kass, 1995; after Jeffreys, 1961)

1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
> 150 Very strong

Computing \(P(D|M) \)

- For the thumbtack example

\[
p(D|M) = \frac{\Gamma(\alpha) \prod_{i=1}^{r} \Gamma(\alpha_i + n_i)}{\Gamma(\alpha + n) \prod_{i=1}^{r} \Gamma(\alpha_i)}
\]

- The graph \(X \rightarrow Y \) corresponds to 3 separate thumbtack problems for \(X, Y | X = \text{heads} \) and \(Y | X = \text{tails} \)

General form of \(P(D|M) \) for a discrete belief network

\[
p(D|M) = \prod_{i=1}^{m} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + n_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + n_{ijk})}{\Gamma(\alpha_{ijk})}
\]

where

- \(n_{ijk} \) is the number of cases where \(X_i = x_k \) and \(Pa_i = p_{d_i} \)
- \(r_i \) is the number of states of \(X_i \)
- \(q_i \) is the number of configurations of the parents of \(X_i \)

\[
\alpha_{ij} = \sum_{k=1}^{r_i} \alpha_{ijk} \quad n_{ij} = \sum_{k=1}^{r_i} n_{ijk}
\]

- Formula due to Cooper and Herskovits (1992)
- Simply the product of the thumbtack result over all nodes and states of the parents

Computation of Marginal Likelihood

Efficient closed form if

- No missing data or hidden variables
- Parameters are independent in prior
- Local distributions are in the exponential family (e.g. multinomial, Gaussian, Poisson, ...)
- Conjugate priors are used
Example

Given data D, compare the two models:

\[
\begin{align*}
\text{model 1} & : X \quad \quad Y \\
\text{model 2} & : X \quad \quad Y
\end{align*}
\]

Counts: $hh = 6$, $ht = 2$, $th = 8$, $tt = 4$, from marginal probabilities

\[
P(X = h) = 0.4 \quad \text{and} \quad P(Y = h) = 0.7
\]

Bayes factor $= \frac{P(D|M_1)}{P(D|M_2)} = 1.97$ in favour of model 1.

Log Likelihood criterion favours model 2:

\[
\log L(M_1) - \log L(M_2) = -0.08
\]

How Bayesian model comparison works

Consider three models M_1, M_2 and M_3 which are under complex, just right and over complex for a particular dataset D^*.

Note that $P(D|M_i)$ must be normalized.

Warning: it can make sense to use a model with an infinite number of parameters (but in a way that the prior is “nice”)

Other scores for comparing models

Above we have used $P(D|M)$ to score models. Other ideas include:

- Maximum likelihood

\[
L(M; D) = \max_{\theta_M} L(\theta_M; M; D)
\]

- Bad choice: adding arcs always helps

Example from supervised learning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
\[\sin(2\pi x)\]

Another view (for a single parameter θ)

\[
P(D|M_i) = \int p(D|\theta, M_i)p(\theta|M_i)d\theta
\]

This last term is known as an Occam factor.

The analysis can be extended to multidimensional θ. Pay an Occam factor on each dimension if parameters are well-determined by data; thus models with more parameters can be penalized more.
Penalize More Complex Models: e.g. AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), Structural Risk Minimization (penalize hypothesis classes based on their VC dimension). BIC can be seen as large n approximation of full Bayesian method.

Minimum description length: (Rissanen, Wallace) closely related to Bayesian method

Restrict the hypothesis space to limit the capability for overfitting: but how much?

Holdout/Cross-validation: validate generalization on data withheld during training—but this “wastes” data . . .

- Number of possible structures over m variables is super-exponential in m
- Finding the BN with the highest marginal likelihood among those structures with at most k parents is NP-hard if $k > 1$ (Chickering, 1995)
- Note: efficient search over trees
- Otherwise, use heuristic methods such as greedy search

Greedy search

- Initialize structure
- Score all possible single changes
- Perform best change
- Any changes better?
 - Yes
 - No
- Return best structure

Example

College plans of high-school seniors (Heckerman, 1995/6).

Variables are

- Sex: male, female
- Socioeconomic status: low, low mid, high mid, high
- IQ: low, low mid, high mid, high
- Parental encouragement: low, high
- College plans: yes, no

Priors

- **Structural prior**: SEX has no parents, CP has no children, otherwise uniform
- **Parameter prior**: Uniform distributions
Best network found

Odd that SES has a direct link to IQ: suggests that a hidden variable is needed

Searching over structures for visible variables is hard; inferring hidden structure is even harder...

Acknowledgements: this presentation has been greatly aided by the tutorials by Nir Friedman and Moises Goldszmidt
http://www.erg.sri.com/people/moises/tutorial/index.htm
ans David Heckerman
http://research.microsoft.com/~heckerman/