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Example time series Stochastic Processes

» A stochastic process is a family of random variables
X(t), t € T indexed by a parameter t in an index set T

» We will consider discrete-time stochastic processes where
T = Z (the integers)

> FTSE 100 » A time series is said to be strictly stationary if the joint
distribution of X(t),..., X(t,) is the same as the joint

» Meteorology: temperature, pressure ... distribution of X(t; +7),..., X(tn+7) forall ty,...,th, 7

» Seismology » A time series is said to be weakly stationary if its mean is

» Electrocardiogram (ECG) constant and its autocovariance function depends only on

> the lag, i.e.

EX)=p Vi
Cov[X()X(t+ 7)] = ~(7)

» A Gaussian process is a family of random variables, any
finite number of which have a joint Gaussian distribution
» The ARMA models we will study are stationary Gaussian

processes
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Autoregressive (AR) Models

>

Example AR(1)
Xt = aXt—1 + Wt

where w; ~ N(0, o?)
By repeated substitution we get

Xt = Wi+ aW_q + &PWpo+ ...

Hence E[X(t)] = 0, and if |a| < 1 the process is stationary

with
VarlX()] = (1 + a2 +a* +.. )02 = o
1—a?
Similarly
Oék0'2
Cov[X(H)X(t — k)] = a*Var[X(t — k)] = -
The general case is an AR(p) process

P
Xt = Z QjXt—j + Wt
i=1

Notice how x; is obtainied by a (linear) regression from

Xt-1, - - ., Xt—p, hence an autoregressive process

Introduce the backward shift operator B, so that
Bx; = x;_1, Bzx, = Xt_o etc
Then AR(p) model can be written as

A(B)xt = wy

where ¢(B) = (1 —a1B... — apBP)

The condition for stationarity is that all the roots of ¢(B) lie

outside the unit circle
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a=0.5
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Yule-Walker Equations

p
Xt = Z QiXp—j+ Wi
i=1

p
XtXt—k = Z QjXt—iXt—k + WiXi—k
i=1

» Taking expectations (and exploiting stationarity) we obtain

p
FVk:Zaifyk—i k:17a27"'
i=1

» Use p simultaneous equations to obtain the ~’s from the
a’s. For inference, can solve a linear system to obtain the
a’s given estimates of the «’s

» Example: AR(1) process, vx = afvg
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Graphical model illustrating an AR(2) process

AR2: a1—02 as = 0.1
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Moving Average (MA) processes

q
Xt = Z BiWi_j (linear filter)
j=0
= Q(B) Wi
with scaling so that fo = 1 and 6(B) = 1+ X7, 5;B8/

Example: MA(1) process

N ,

Vector AR processes

p
Xt = ZA,‘Xt,,' + GWt
i=1
where the A;s and G are square matrices

» We can in general consider modelling multivariate (as
opposed to univariate) time series

» An AR(2) process can be written as a vector AR(1)
process:

Xt B a1 Qo Xt—1 4 10 Wi

Xt—1 - 1 0 Xt—2 00 Wi_1

» In general an AR(p) process can be written as a vector
AR(1) process with a p-dimensional state vector (cf ODEs)
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» We have E[X(t)] =0, and

Var[X(1)] = (1 + 65 + ... + B5)0?

q q
Cov[X(DX(t — K)] = E[>_ Biwi_j, > Bii—k—i]
j=0 i=0

—k
_ ) P kb
0 fork > q

» Note that covariance “cuts off” for k > g
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fork=0,1,...
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ARMA(p,q) processes The Fourier View

p q
X; = Zaixt—i n Z/B'Wt—' » ARMA models are linear time-invariant systems. Hence
P =0 S sinusoids are their eigenfunctions (Fourier analysis)
#(B)x; = 0(B)w; » This means it is natural to consider the power spectrum of

the ARMA process. The power spectrum S(k) can be
determined from the {a}, {3} coefficients

» Roughly speaking S(k) is the amount of power allocated
&(B)xt = wy on average to the eigenfunction 7!

xt=(1—at1B... apBP) 'wy » This is a useful way to understand some properties of
(14 3B+ BB .. w ARMA processes, but we will not pursue it further here

» If you want to know more, see e.g. Chatfield (1989) chapter

» Similarly a MA(g) process can be written as a AR() 7 or Diggle (1990) chapter 4
process

» Utility of ARMA(p,q) is potential parsimony

» Writing an AR(p) process as a MA(co) process
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Parameter Estimation Model Order Selection, References

» Let the vector of observations x = (x(t;),..., x(t,))"
» Estimate and subtract constant offset i if this is non zero

» ARMA models driven by Gaussian noise are Gaussian > For a MA(q) process there should be a cut-off in the
processes. Thus the likelihood L(x; cr, 3) is a multivariate autocorrelation function for lags greater than q
Gaussian, and we can optimize this wrt the parameters » For general ARMA models this is model order selection
(e.g. by gradient ascent) problem, discussed in an upcoming lecture

> AR(p) models, , Some useful books:

Xt = Z QiXt_j + Wi » The Analysis of Time Series: An Introduction. C. Chatfield,
i1 Chapman and Hall, 4th edition, 1989

can be viewed as the linear regression of x; on the p » Time Series: A Biostatistical Introduction. P. J. Diggle,
previous time steps, a and o2 can be estimated using Clarendon Press, 1990

linear regression

» This viewpoint also enables the fitting of nonlinear AR
models
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Linear-Gaussian HMMs

» HMM with continuous state-space and observations

» Filtering problem known as Kalman filtering
» Dynamical model

Zp 1 = AZp + Wpy 1

where W, 1 ~ N(0,T) is Gaussian noise, i.e.

P(zn+11zn) ~ N(Azs,T)
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Inference Problem — filtering

» As whole model is Gaussian, only need to compute means and
» Observation model variances

p(zf7|x1a v 7xf7) ~ N(an Vn)
Xn - CZn + Vn
h N(0, ¥) is Gaussian noise, i.e Ho = ELZalX1, .- Xal
where v, ~ , )i ussi ise, i.e.
! Vi = E[(2n — 10)(Zn — 1) X1, X0
Xn|zn) ~ N(Cz,, X
p(Xnlzn) (Czp,2) » Recursive update split into two parts

» Initialization » Time update
p(z1) ~ N(po, Vo)
P(Zn|X1, ..., Xn) — P(Znt1[X1, ..., Xn)
» Measurement update

p(zn+1 |X1 PR axﬂ) - p(zn+1 |X1 s axnaxﬂ+1)
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» Time update

Zn1 = AZp + Wpiy
thus
E[zpi1|X1, ... X = App,

def

COV(Zn+1 |X1 PRI x”) - Pn - AVnAT + r

» Measurement update (like posterior in Factor Analysis)

Hp1 = Al"n + Kn+1 (xn+1 - CA[Ln)
Vot = (I = Kn1 C) Py

where
Kn1 = P,CT(CP,CT + )71

» K1 is known as the Kalman gain matrix
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Simple example

Zny1 = Zn + Wpt

WnNN(0,1)
Xp = Zn+ Vp

Vo ~ N(0, 1)
p(z1) ~ N(0,0%)

In the limit 02 — oo we find
BX3 + 2X0 + X1
H3 = -8
» Notice how later data has more weight
» Compare z,1 = z, (so that w,, has zero variance); then
X3+ X2+ X

H3 3
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Applications Extensions
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Much as a coffee filter serves to keep undesirable
grounds out of your morning mug, the Kalman filter is
designed to strip unwanted noise out of a stream of
data. Barry Cipra, SIAM News 26(5) 1993

Navigational and guidance systems
Radar tracking

Sonar ranging

Satellite orbit determination
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Dealing with non-linearity

» The Extended Kalman Filter (EKF)
If x, = f(zn) + v, where f is a non-linear function, can
linearize f, e.g. around E[z;|X1, ... X,_1]. Works for weak
non-linearities

» For very non-linear problems use sampling methods
(known as particle filters). Example, work of Blake and
Isard on tracking, see
http://www.robots.ox.ac.uk/~vdg/dynamics.html

It is possible to train KFs using a forward-backward algorithm

24/24



