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Outline

I Stochastic processes
I AR, MA and ARMA models
I The Fourier view
I Parameter estimation for ARMA models
I Linear-Gaussian HMMs (Kalman filtering)
I Reading: Handout on Time Series Modelling: AR, MA,

ARMA and All That
I Reading: Bishop 13.3 (but not 13.3.2, 13.3.3)
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Example time series

I FTSE 100
I Meteorology: temperature, pressure ...
I Seismology
I Electrocardiogram (ECG)
I . . .
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Stochastic Processes

I A stochastic process is a family of random variables
X (t), t ∈ T indexed by a parameter t in an index set T

I We will consider discrete-time stochastic processes where
T = Z (the integers)

I A time series is said to be strictly stationary if the joint
distribution of X (t1), . . . ,X (tn) is the same as the joint
distribution of X (t1 + τ), . . . ,X (tn + τ) for all t1, . . . , tn, τ

I A time series is said to be weakly stationary if its mean is
constant and its autocovariance function depends only on
the lag, i.e.

E [X (t)] = µ ∀ t
Cov[X (t)X (t + τ)] = γ(τ)

I A Gaussian process is a family of random variables, any
finite number of which have a joint Gaussian distribution

I The ARMA models we will study are stationary Gaussian
processes
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Autoregressive (AR) Models

I Example AR(1)
xt = αxt−1 + wt

where wt ∼ N(0, σ2)

I By repeated substitution we get

xt = wt + αwt−1 + α2wt−2 + . . .

I Hence E [X (t)] = 0, and if |α| < 1 the process is stationary
with

Var[X (t)] = (1 + α2 + α4 + . . .)σ2 =
σ2

1− α2

I Similarly

Cov[X (t)X (t − k)] = αk Var[X (t − k)] =
αkσ2

1− α2
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α = 0.5

α = −0.5
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I The general case is an AR(p) process

xt =

p∑
i=1

αixt−i + wt

I Notice how xt is obtainied by a (linear) regression from
xt−1, . . . , xt−p, hence an autoregressive process

I Introduce the backward shift operator B, so that
Bxt = xt−1, B2xt = xt−2 etc

I Then AR(p) model can be written as

φ(B)xt = wt

where φ(B) = (1− α1B . . .− αpBp)

I The condition for stationarity is that all the roots of φ(B) lie
outside the unit circle
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Yule-Walker Equations

xt =

p∑
i=1

αixt−i + wt

xtxt−k =

p∑
i=1

αixt−ixt−k + wtxt−k

I Taking expectations (and exploiting stationarity) we obtain

γk =

p∑
i=1

αiγk−i k = 1, , 2, . . .

I Use p simultaneous equations to obtain the γ’s from the
α’s. For inference, can solve a linear system to obtain the
α’s given estimates of the γ’s

I Example: AR(1) process, γk = αkγ0
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Graphical model illustrating an AR(2) process

. . . . . .

AR2: α1 = 0.2, α2 = 0.1

AR2: α1 = 1.0, α2 = −0.5
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Vector AR processes

xt =

p∑
i=1

Aixt−i + Gwt

where the Ais and G are square matrices
I We can in general consider modelling multivariate (as

opposed to univariate) time series
I An AR(2) process can be written as a vector AR(1)

process:(
xt

xt−1

)
=

(
α1 α2
1 0

)(
xt−1
xt−2

)
+

(
1 0
0 0

)(
wt

wt−1

)
I In general an AR(p) process can be written as a vector

AR(1) process with a p-dimensional state vector (cf ODEs)
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Moving Average (MA) processes

xt =

q∑
j=0

βjwt−j (linear filter)

= θ(B)wt

with scaling so that β0 = 1 and θ(B) = 1 +
∑q

j=1 βjBj

Example: MA(1) process

x’s

w’s

11 / 24

I We have E [X (t)] = 0, and

Var[X (t)] = (1 + β2
1 + . . .+ β2

q)σ2

Cov[X (t)X (t − k)] = E [

q∑
j=0

βjwt−j ,

q∑
i=0

βiwt−k−i ]

=

{
σ2∑q−k

j=0 βj+kβj for k = 0, 1, . . . ,q
0 for k > q

I Note that covariance “cuts off” for k > q
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ARMA(p,q) processes

xt =

p∑
i=1

αixt−i +

q∑
j=0

βjwt−j

φ(B)xt = θ(B)wt

I Writing an AR(p) process as a MA(∞) process

φ(B)xt = wt

xt = (1− α1B . . . αpBp)−1wt

= (1 + β1B + β2B2 . . .)wt

I Similarly a MA(q) process can be written as a AR(∞)
process

I Utility of ARMA(p,q) is potential parsimony
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The Fourier View

I ARMA models are linear time-invariant systems. Hence
sinusoids are their eigenfunctions (Fourier analysis)

I This means it is natural to consider the power spectrum of
the ARMA process. The power spectrum S(k) can be
determined from the {α}, {β} coefficients

I Roughly speaking S(k) is the amount of power allocated
on average to the eigenfunction e2πikt

I This is a useful way to understand some properties of
ARMA processes, but we will not pursue it further here

I If you want to know more, see e.g. Chatfield (1989) chapter
7 or Diggle (1990) chapter 4
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Parameter Estimation

I Let the vector of observations x = (x(t1), . . . , x(tn))T

I Estimate and subtract constant offset µ̂ if this is non zero
I ARMA models driven by Gaussian noise are Gaussian

processes. Thus the likelihood L(x; α,β) is a multivariate
Gaussian, and we can optimize this wrt the parameters
(e.g. by gradient ascent)

I AR(p) models,

xt =

p∑
i=1

αixt−i + wt

can be viewed as the linear regression of xt on the p
previous time steps, α and σ2 can be estimated using
linear regression

I This viewpoint also enables the fitting of nonlinear AR
models
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Model Order Selection, References

I For a MA(q) process there should be a cut-off in the
autocorrelation function for lags greater than q

I For general ARMA models this is model order selection
problem, discussed in an upcoming lecture

Some useful books:
I The Analysis of Time Series: An Introduction. C. Chatfield,

Chapman and Hall, 4th edition, 1989
I Time Series: A Biostatistical Introduction. P. J. Diggle,

Clarendon Press, 1990
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Linear-Gaussian HMMs

I HMM with continuous state-space and observations
I Filtering problem known as Kalman filtering
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I Dynamical model

zn+1 = Azn + wn+1

where wn+1 ∼ N(0, Γ) is Gaussian noise, i.e.

p(zn+1|zn) ∼ N(Azn, Γ)
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I Observation model

xn = Czn + vn

where vn ∼ N(0,Σ) is Gaussian noise, i.e.

p(xn|zn) ∼ N(Czn,Σ)

I Initialization
p(z1) ∼ N(µ0,V0)
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Inference Problem – filtering

I As whole model is Gaussian, only need to compute means and
variances

p(zn|x1, . . . ,xn) ∼ N(µn,Vn)

µn = E [zn|x1, . . . ,xn]

Vn = E [(zn − µn)(zn − µn)T |x1, . . . ,xn]

I Recursive update split into two parts

I Time update

p(zn|x1, . . . ,xn)→ p(zn+1|x1, . . . ,xn)

I Measurement update

p(zn+1|x1, . . . ,xn)→ p(zn+1|x1, . . . ,xn,xn+1)
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I Time update
zn+1 = Azn + wn+1

thus
E[zn+1|x1, . . .xn] = Aµn

cov(zn+1|x1, . . .xn)
def
= Pn = AVnAT + Γ

I Measurement update (like posterior in Factor Analysis)

µn+1 = Aµn + Kn+1(xn+1 − CAµn)

Vn+1 = (I − Kn+1C)Pn

where
Kn+1 = PnCT (CPnCT + Σ)−1

I Kn+1 is known as the Kalman gain matrix

21 / 24

Simple example

zn+1 = zn + wn+1

wn ∼ N(0,1)
xn = zn + vn

vn ∼ N(0,1)
p(z1) ∼ N(0, σ2)

In the limit σ2 →∞ we find

µ3 =
5x3 + 2x2 + x1

8

I Notice how later data has more weight

I Compare zn+1 = zn (so that wn has zero variance); then

µ3 =
x3 + x2 + x1

3
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Applications

Much as a coffee filter serves to keep undesirable
grounds out of your morning mug, the Kalman filter is
designed to strip unwanted noise out of a stream of
data. Barry Cipra, SIAM News 26(5) 1993

I Navigational and guidance systems
I Radar tracking
I Sonar ranging
I Satellite orbit determination
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Extensions

Dealing with non-linearity
I The Extended Kalman Filter (EKF)

If xn = f (zn) + vn where f is a non-linear function, can
linearize f , e.g. around E[zn|x1, . . .xn−1]. Works for weak
non-linearities

I For very non-linear problems use sampling methods
(known as particle filters). Example, work of Blake and
Isard on tracking, see
http://www.robots.ox.ac.uk/∼vdg/dynamics.html

It is possible to train KFs using a forward-backward algorithm
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