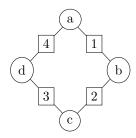
Variational Distribution: Exam Example

Amos Storkey a.storkey@ed.ac.uk

March 23, 2016

1. In this question we consider the use of a factor graph for inference Having absorbed the conditioned information, we are left with the following Factor Graph of binary $\{0, 1\}$ variables.



The graph has factor potentials $\phi_1(a, b, c, d) = \phi_1(a, b) = e^{ab}$, $\phi_2(a, b, c, d) = \phi_2(b, c) = e^{bc}$, $\phi_3(a, b, c, d) = \phi_3(c, d) = e^{cd}$ and $\phi_4(a, b, c, d) = \phi_4(d, a) = e^{-da}$, where a, b, c take values 0 or 1 corresponding to each node.

(a) Find an expression for P(a,b) (up to a normalisation constant) using variable elimination. Show your working.

Answer: To do this we need to eliminate nodes c and d. Eliminating c is easiest. There we have

$$P(a, b, d) = \sum_{c} P(a, b, c, d) = (1/Z)e^{ab}e^{-da}\sum_{c} e^{bc+cd} = e^{ab}e^{-da}[1+e^{b+d}].$$

Now we eliminate d:

$$P(a,b) = \sum_{d} P(a,b,d) = (1/Z)e^{ab} \sum_{d} [e^{-da} + e^{b+d-da}] = (1/Z)e^{ab}[1 + e^{b} + e^{-a} + e^{b+1-a}]$$

So the distribution for P(a, b) is

$$P(a,b) = (1/Z)e^{ab}[1 + e^{b} + e^{-a} + e^{b-a+1}]$$

(b) Consider using a variational posterior distribution of the form Q(a, b, c, d) = Q(a)Q(b)Q(c)Q(d). Let $q_a = Q(a = 1)$. Likewise $q_b = Q(b = 1)$, $q_c = Q(c = 1)$, $q_d + Q(d = 1)$. The Variational Free Energy is written as

$$F = -\sum_{a,b,c,d} Q(a,b,c,d) \left[\log \left(\prod_{i} \phi_i(a,b,c,d) \right) - \log Q(a,b,c,d) \right]$$

Write the variational free energy for this system in terms of the parameters q_a , q_b and q_c , q_d .

Answer: Plugging in and using rules for logarithms of products, we have the free energy F is

$$F = -q_a q_b - q_b q_c - q_c q_d + q_d q_a + q_a \log q_a + (1 - q_a) \log(1 - q_a) + q_b \log q_b + (1 - q_b) \log(1 - q_b) + q_c \log q_c + (1 - q_c) \log(1 - q_c) + q_d \log q_d + (1 - q_d) \log(1 - q_d).$$

Note we have used that $Q(a = 0) = 1 - q_a$, and $E_Q[ab] = q_a q_b$ etc.

(c) Work out and write out one expression relating q_a , q_b and q_d that must hold at the minimum of the variational free energy.

Answer: We need to relate q_a , to q_b and q_d . Note from the graph that these variables are the market blanket of node a, so we can take derivative of F w.r.t. q_a to get an expression for these. At an optimum these derivatives must be zero, so we get (ignoring terms not containing q_a):

$$\frac{\partial F}{\partial q_a} = \frac{\partial}{\partial q_a} [-q_a q_b + q_d q_a + q_a \log q_a + (1 - q_a) \log(1 - q_a)] = \log q_a - \log(1 - q_a) - q_b + q_d = 0$$

leading to $\log q_a - \log(1 - q_a) = q_b - q_d$. This expression must hold at the optimum. Aside: In general we get 4 of these equations, and we solve this set of self consistent equations (usually iteratively) in order to find the optimum.

(d) Using standard belief propagation, assume the initial clockwise message arriving at node 'a' is (r, 1-r). What is the message arriving at node 'b' during clockwise belief propagation.

Answer: This is a very simple case, where all nodes connect to only 2 nodes, and so no product is needed. The message is simply

$$\begin{pmatrix} e^{0\times 0} & e^{0\times 1} \\ e^{1\times 0} & e^{1\times 1} \end{pmatrix} \begin{pmatrix} r \\ (1-r) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & e \end{pmatrix} \begin{pmatrix} r \\ (1-r) \end{pmatrix} = \begin{pmatrix} 1 \\ r+(1-r)e \end{pmatrix}$$