PMR Learning as Inference

Probabilistic Modelling and Reasoning

Amos Storkey

School of Informatics, University of Edinburgh

- 1 Modelling
- 2 The Exponential Family
- 3 Bayesian Sets

Amos Storkey — PMR Learning as Inference

1/43

Amos Storkey — PMR Learning as Inference

2/43

Modelling

y Bayesian Sets

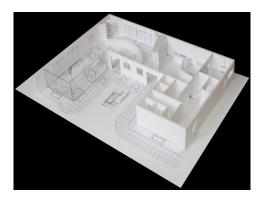
Modelling

Probabilistic Modelling is about building models and using them.

What do we mean by modelling?

Modelling The Exponential Family Bayesian Se

Modelling



Modelling The Exponential Family Bayesian Se

A Generative Model

- Building an idealisation to capture the essential elements of an item.
- Think of a model as a model for future data generation
- Given a model (a distribution) we can sample from that distribution to get artificial data.
- Need to specify enough to do this generation.
- Often make IID (Independent and Identically Distributed) Assumption
- Models are not truth. They try to capture our uncertainties.

Amos Storkey — PMR Learning as Inference

7/43

Amos Storkey — PMR Learning as Inference

Modelling The Exponential Family Bayesian Sets

The Inverse Problem

- We built a generative model, or a set of generative models on the basis of what we know (prior).
- Can generate artificial data.
- BUT what if we want to *learn* a good distribution for data that we then see? How is goodness measured?

Explaining Data

A particular distribution explains the data better if the data is more probable under that distribution.

■ The likelihood approach

,

8/4

Likelihood

- $P(\mathcal{D}|\mathcal{M})$. The probability of the data \mathcal{D} given a distribution (or model) \mathcal{M} . This is called the likelihood of the model.
- This is

$$P(\mathcal{D}|\mathcal{M}) = \prod_{n=1}^{N} P(x^{n}|\mathcal{M})$$

i.e. the product of the probabilities of generating each data point individually.

- This is a result of the independence assumption (indep → product of probabilities by definition).
- Try different \mathcal{M} (different distributions). Pick the \mathcal{M} with the highest likelihood \rightarrow Maximum Likelihood Approach.

Bernoulli model

Example

Data: 10010101000001011101.

- Continuous range of hypotheses: $\mathcal{M} = p$ Generated from a Boolean distribution with P(1|p) = p.
- Likelihood of data. Let c=number of ones:

$$\prod_{n=1}^{N} P(x^{n}|p) = p^{c}(1-p)^{20-c}$$

- Maximum likelihood hypothesis? Differentiate w.r.t. p to find maximum
- In fact usually easier to differentiate $\log P(\mathcal{D}|\mathcal{M})$: \log is monotonic. So argmax $\log(f(x)) = \operatorname{argmax} f(x)$.

Amos Storkey — PMR Learning as Inference

11/43

Modelling The Exponential Family Bayesian Ser

Distributions over Parameters

- Parameter bias
- Although we are uncertain about the parameter values. often some are more probable than others.
- Uncertainty → probability: put prior (distribution) on parameters.
- Compute max posterior instead of max likelihood
- Bayes Rule:

Posterior
$$\rightarrow P(p|\mathcal{D}) = \frac{P(\mathcal{D}|p)P(p)}{P(\mathcal{D})} \leftarrow \text{Prior}$$

- $P(\mathcal{D}) = \int dp \ P(p|\mathcal{D})P(p)$ does not depend on p.
- \blacksquare argmax $P(\mathcal{D}|p)P(p)$
- argmax $(\log P(\mathcal{D}|p) + \log P(p)) \leftarrow$ penalty term

Bernoulli model

Example

Data: 10010101000001011101.

Likelihood of data. Let c=number of ones:

$$\log \prod_{n=1}^{N} P(x^{n}|p) = c \log p + (20 - c) \log(1 - p)$$

- Set $d/dp \log P(\mathcal{D}|\mathcal{M}) = c/p (20 c)/(1 p)$ to zero to find maximum.
- So c(1-p) (20-c)p = 0. This gives p = c/20. Maximum likelihood is unsurprising.

Amos Storkey — PMR Learning as Inference

12/43

Maximum Posterior

Example

 $1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 1\ 0\ 1.$ $P(p) \propto p(1-p)$

Let c=number of ones (9). Then $\log P(p|\mathcal{D}) =$

$$c \log p + (20 - c) \log(1 - p) + \log p + \log(1 - p) + \text{const}$$

- Set $d/dp \log P(\mathcal{D}|\mathcal{M}) = (c+1)/p (20-c+1)/(1-p)$ to zero to find maximum.
- So (c+1)(1-p) (20-c+1)p = 0. This gives $p = (c+1)/22 = 9/22 \approx 0.41.$
- With this prior, max. posterior prefers p closer to 1/2.

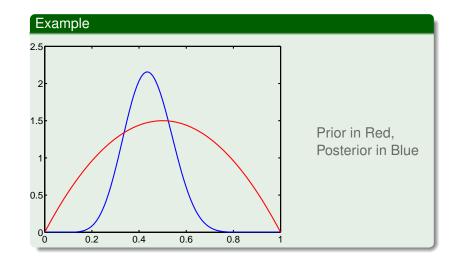
Modelling The Exponential Family Bayesian Se

Uncertainty of Parameters

- Maximizing the posterior gets us one value for the parameter.
- Is it right?
- No it is an estimate. But how good an estimate? There is some uncertainty. How much?
- Uncertainty → probability.
- Find posterior *distribution* over parameters, not just maximum.

Modelling The Exponential Family Bayesian Sets

Posterior Distribution



Amos Storkey — PMR Learning as Inference

15/43

elling The Exponential Family Bayesian Sets

Inference and Marginalisation

Example

10010101010000111101. $P(p) \propto p(1-p)$

- What is probability of next item x^* being 1? Predict.
- Could take maximum posterior parameter and compute probability of next item? (≈ 0.41)
- But: lots of possible posterior parameters. Some more possible than others.
- Instead marginalise:

$$\int dp\ P(x_*=1|p)P(p|\mathcal{D})$$

■ This gives approximately 0.46.

Amos Storkey — PMR Learning as Inference

16/43

Modelling The Exponential Family Bayesian Set

Test

- We considered choosing between model, where each model defined a precise distribution.
- But what if each model defines a whole *type* of distribution.
- We might not know the precise *parameters* of the distribution.
- Compute the *evidence* or *marginal likelihood*:
- Marginalise out the unknown parameters to get likelihood of model.

Modelling The Exponential Family Bayesian Set

Learning as inference

- Its just as if the parameters were nodes in our graphical model.
- In fact that is exactly what they are.
- Latent variables intrinsic separate variables for each data item.
- Parameters extrinsic shared across all data items.

Amos Storkey — PMR Learning as Inference

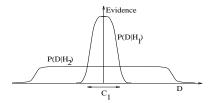
19/43

Modelling The Exponential Family Bayesian Sets

Why not maximize?

We have described learning as an inference procedure. But why not maximize.

- Why be Bayesian? Why not compute best parameters and compare?
- More parameters=better fit to data. ML: bigger is better.
- But might be overfitting: only these parameters work. Many others don't.



- Prefer models that are unlikely to 'accidentally' explain the data.
- That said, maximum posterior parameters are often good

Modelling The Exponential Family Bayesian S

Summary of Bayesian Computation

■ Define prior model $P(\mathcal{D})$, usually by using

$$P(\mathcal{D}) = \int d\theta \ P(\mathcal{D}|\theta)P(\theta)$$

and defining:

- The likelihood $P(\mathcal{D}|\theta)$ with parameters θ .
- The *prior distribution* (over parameters) $P(\theta|\alpha)$ which might also be parameterized by hyper-parameters α .
- Conditioning on data to get the *posterior distribution* over parameters $P(\theta|\mathcal{D})$.
- Using the posterior distribution for prediction (inference)

$$P(\mathbf{x}^*|\mathcal{D}) = \int d\boldsymbol{\theta} \ P(\mathbf{x}^*|\boldsymbol{\theta}) P(\boldsymbol{\theta}|\mathcal{D})$$

Amos Storkey — PMR Learning as Inference

20/4

Modelling The Exponential Family Bayesian Se

Recap

- For Bernoulli likelihood with Beta prior, could do Bayesian computation analytically.
- For Binomial likelihood and Beta prior, could do Bayesian computation analytically.
- For Multinomial likelihood and Dirichlet prior, could do Bayesian computation analytically.
- Question: are there other distributions for which we can do analytical Bayesian computations?
- Is this a good thing? Discuss.

Amos Storkey — PMR Learning as Inference

Analytical methods

- Yes: conjugate exponential models.
- Good thing: easy to do the sums.
- Bad thing: prior distribution should match beliefs. Does a Beta distribution match your beliefs? Is it good enough?
- Certainly not always.

The exponential family

Any distribution over some x that can be written as

$$P(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x})\right)$$

with h and g known, is in the exponential family of distributions.

- Many of the distributions we have seen are in the exponential family. A notable exception is the *t*-distribution.
- The η are called the *natural parameters* of the distribution.

Amos Storkey — PMR Learning as Inference

23/43

odelling The Exponential Family Bayesian S

Modelling The Exponential Family Bayesian Se

Wait - I didn't get that!

$$P(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x})\right)$$

- More simply....
- Any distribution that can be written such that the interaction term (between parameters and variables) is log linear in the parameters is in the *exponential family*.
- i.e.

$$\log P(\mathbf{x}|\boldsymbol{\eta}) = \sum_{i} \eta_{i} u_{i}(\mathbf{x}) + (\text{other stuff that only contains } \mathbf{x} \text{ or } \boldsymbol{\eta})$$

- A distribution may usually be parameterized in a way that is different from the exponential family form.
- So sometimes useful to convert to exponential family representation and find the 'natural' parameters.

Amos Storkey — PMR Learning as Inference

24/43

The exponential family

Multinomial Distribution

$$P(\mathbf{x}|\{\log p_k\}) \propto \exp\left(\sum_k x_k \log p_k\right)$$

The Gaussian Distribution

Need to intro the Gaussian first.

Modelling The Exponential Family Bayesian Set

Definition

■ The one dimensional Gaussian distribution is given by

$$P(x|\mu, \sigma^2) = N(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$

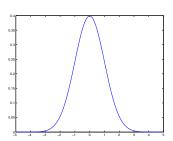
- \blacksquare μ is the *mean* of the Gaussian and σ^2 is the *variance*.
- If $\mu = 0$ and $\sigma^2 = 1$ then $N(x; \mu, \sigma^2)$ is called a *standard* Gaussian.

Amos Storkey — PMR Learning as Inference

27/43 Amos Sto

Modelling The Exponential Family Bayesian Sets

Plot



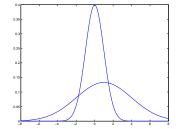
- This is a standard one dimensional Gaussian distribution.
- All Gaussians have the same shape subject to scaling and displacement.
- If x is distributed $N(x; \mu, \sigma^2)$, then $y = (x \mu)/\sigma$ is distributed N(y; 0, 1).

Amos Storkey — PMR Learning as Inference

28/43

Modelling The Exponential Family Bayesian Set Normalisation

- Remember all distributions must integrate to one. The $\sqrt{2\pi\sigma^2}$ is called a normalisation constant it ensures this is the case.
- Hence tighter Gaussians have higher peaks:



- \blacksquare X_i mean 0, variance Σ , not necessarily Gaussian.
- \blacksquare X_i subject to various conditions (e.g. IID, light tails).

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}X_{i}\sim N(0,\Sigma)$$

asymptotically as $N \to \infty$.

■ The vector x is multivariate Gaussian if for mean μ and covariance matrix Σ , it is distributed according to

$$P(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|(2\pi)\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

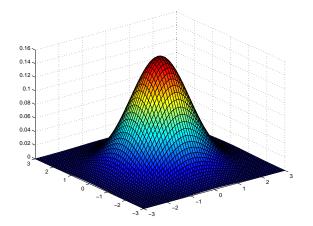
- The univariate Gaussian is a special case of this.
- \blacksquare Σ is called a covariance matrix. It says how much attributes co-vary. More later.

Amos Storkey — PMR Learning as Inference

31/43

Modelling The Exponential Family Bayesian Se

Multivariate Gaussian: Picture



Amos Storkey — PMR Learning as Inference

32/43

odelling The Exponential Family Bayesian Se The exponential family

Gaussian Distribution

$$P(\mathbf{x}|\boldsymbol{\eta}) \propto \exp\left(\sum_{k} \eta_{k} x_{k} - \frac{1}{2} \sum_{ij} \Sigma_{ij}^{-1} x_{i} x_{j}\right)$$

Pause

Conjugate exponential models

- If the prior takes the same functional form as the posterior for a given likelihood, a prior is said to be conjugate for that likelihood
- There is a conjugate prior for any exponential family distribution.
- If the prior and likelihood are conjugate and exponential, then the model is said to be conjugate exponential
- In conjugate exponential models, the Bayesian integrals can be done analytically.

Amos Storkey — PMR Learning as Inference

35/43

Amos Storkey — PMR Learning as Inference

Modelling The Exponential Family Bayesian Sets

Conjugacy

- In high dimensional spaces it is hard to accurately estimate the parameters using maximum likelihood. Can utilise Bayesian methods.
- Conjugate distribution for the Gaussian with mean parameter is another Gaussian.
- Conjugate distribution for the Gaussian with precision (inverse variance) parameter is the Gamma distribution.
- Conjugate distribution for the Gaussian with precision matrix (inverse covariance is the Wishart distirbution.
- Conjugate distribution for the Gaussian with both mean and precision matrix is the Gaussian-Wishart distribution.
- Wishart distribution is distribution over matrices!

odelling The Exponential Family Bayesian Set

Conjugacy

- Remember for conjugate distribution posterior is of the same form.
- So given the data, we just need to update the hyperparameters of the prior distribution to get the posterior.

Example

- Gaussian $N(\mu, \Lambda^{-1})$. Fixed precision Λ , but μ distributed $N(\mu_0, \Lambda_0^{-1})$
- Posterior mean $(\Lambda_0 + n\Lambda)^{-1}(\Lambda_0 \mu_0 + n\Lambda \bar{x})$
- Posterior precision $(\Lambda_0 + n\Lambda)$.

Example

- Gaussian likelihood $N(x; \mu, \Sigma)$, Gaussian prior $N(\mu; \mu_0, \Sigma_0)$. Simple case: $\mu_0 = 0$, Σ known.
- Marginal likelihood (Evidence)? We know Marginal Likelihood is Gaussian. So using $x = \mu + \epsilon$, ϵ mean 0, covariance Σ , compute mean \mathbf{m} and covariance C of marginal likelihood

$$\mathbf{m} = \langle \mathbf{x} \rangle = \langle \boldsymbol{\mu} \rangle + 0 = 0$$

$$C = \langle \mathbf{x} \mathbf{x}^T \rangle = \langle \mu \mu^T \rangle + \langle \epsilon \epsilon^T \rangle + 0 = \Sigma + \Sigma_0$$

- Red Orange Yellow Aquamarine
- Haggis Mountains Loch Celtic Castle
- Trees, Forests, Pruning, Parent, Machine Learning, Bayesian.
- Google Sets

Amos Storkey — PMR Learning as Inference

39/43

Amos Storkey — PMR Learning as Inference

40/43

Modelling The Exponential Family Bayesian Sets

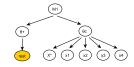
Different features

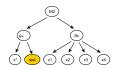
- Have a large database of objects, each described by \mathcal{D}^+ (e.g. Web)
- Have a small number of examples from the dataset, each with various (binary) features, which we collect into \mathcal{D}_c .
- Want to pick things from \mathcal{D}^+ that 'belong to the same set' as those in \mathcal{D}_c
- How should we do it?

Modelling The Exponential Family Bayesian Sets

Model

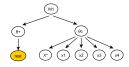
- Data consists of \mathcal{D}_c and query point \mathbf{x}^* . Denote by \mathcal{D} .
- Two models: \mathcal{M}_1 : \mathcal{D} all from same subset C, or \mathcal{M}_2 : \mathcal{D}_c from the same subset C, but \mathbf{x} from the general distribution over all data \mathcal{D}^+

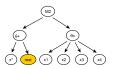




- Parameter vector is vector of (Boolean) probabilities, one for each feature.
- \mathcal{D}^+ is vast, and so presume maximum likelihood estimate good enough for $\mathcal{M}1$: have vector θ^+ for this.

Score





- Parameter vector θ_c for subset C is not known. So put a conjugate prior on the parameters: a Beta distribution for each component i of the feature vector, with hyper-parameters a_i and b_i .
- Compute $P(\mathcal{D}|\mathcal{M}_1)/P(\mathcal{D}|\mathcal{M}_2)$ (called the Bayes Factor).
- The larger this ratio is, the more this favours *x** being included in the set.
- Bayesian Model Comparison: parameters integrated out:

$$P(\mathcal{D}|\mathcal{M}_2) = \int P(\mathcal{D}|\theta)P(\theta|\alpha)d\theta$$

Amos Storkey — PMR Learning as Inference

43/43