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Modelling Modelling
Modelling Modelling

Probabilistic Modelling is about building models and using
them.

What do we mean by modelling?
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Modelling The Exponential Family Bayesian Sets

Modelling
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Modelling The Exponential Family Bayesian Sets

The Inverse Problem

m We built a generative model, or a set of generative models
on the basis of what we know (prior).

m Can generate artificial data.

m BUT what if we want to learn a good distribution for data
that we then see? How is goodness measured?

Explaining Data
A particular distribution explains the data better if the data is
more probable under that distribution.

m The likelihood approach
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Modelling The Exponential Family Bayesian Sets

A Generative Model

m Building an idealisation to capture the essential elements
of an item.

m Think of a model as a model for future data generation

m Given a model (a distribution) we can sample from that
distribution to get artificial data.

m Need to specify enough to do this generation.

m Often make 11D (Independent and Identically Distributed)
Assumption

m Models are not truth. They try to capture our uncertainties.
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Likelihood

m P(D|M). The probability of the data D given a distribution
(or model) M. This is called the likelihood of the model.

m Thisis N
P(DIM) = H P("IM)
n=1
i.e. the product of the probabilities of generating each data
point individually.
m This is a result of the independence assumption (indep —
product of probabilities by definition).

m Try different M (different distributions). Pick the M with the
highest likelihood — Maximum Likelihood Approach.
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Modelling
Bernoulli model

Data:10010101000001011101. I

m Continuous range of hypotheses: M = p - Generated from
a Boolean distribution with P(1|p) = p.

m Likelihood of data. Let c=number of ones:
N
H P(Xn“?) — pC(l _ p)ZO—C

m Maximum likelihood hypothesis? Differentiate w.r.t. p to
find maximum

m In fact usually easier to differentiate log P(D|M): log is
monotonic. So argmax log(f(x)) = argmax f(x).

Amos Storkey — PMR Learning as Inference 11/43

Modelling

Distributions over Parameters

Parameter bias

m Although we are uncertain about the parameter values,
often some are more probable than others.

m Uncertainty — probability: put prior (distribution) on
parameters.

m Compute max posterior instead of max likelihood

m Bayes Rule:

POPP() « Prio

Posterior — P(p|D) = P(D)

m P(D) = [ dp P(p|D)P(p) does not depend on p.
m argmax P(Dlp)P(p)
m argmax (log P(Dlp) + log P(p)) < penalty term
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Modelling
Bernoulli model
Data:10010101000001011101. l

m Likelihood of data. Let c=number of ones:

N
log H P(x"|p) = clogp + (20 — c)log(1 — p)

n=1
m Setd/dplog P(DIM) =c/p — (20 —c)/(1 — p) to zero to find
maximum.

m Soc(1-p)—(20—-c)p = 0. This gives p = ¢/20. Maximum
likelihood is unsurprising.

Amos Storkey — PMR Learning as Inference 12/43

Modelling
Maximum Posterior

10010101000001011101. P(p) o p(1—p)

m Let c=number of ones (9). Then log P(p|D) =
clogp + (20 — c¢)log(1 — p) + logp + log(1 — p) + const
m Setd/dplog P(DIM) = (c+1)/p—(20-c+1)/(1—p) to zero
to find maximum.
m So(c+1)(1-p)—(20—-c+1)p=0. This gives
p=(c+1)/22 =9/22 ~ 0.41.
m With this prior, max. posterior prefers p closer to 1/2.
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m Maximizing the posterior gets us one value for the
parameter.

m s it right?

m No it is an estimate. But how good an estimate? There is

some uncertainty. How much?
m Uncertainty — probability.

m Find posterior distribution over parameters, not just
maximum.
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Inference and Marginalisation Test
10010101000001011101.P(p)ep(l—p) I

m What is probability of next item x* being 1? Predict.

m Could take maximum posterior parameter and compute
probability of next item? (~ 0.41)

m But: lots of possible posterior parameters. Some more
possible than others.

m Instead marginalise:

fdp P(x. = 1|p)P(p|D)

m This gives approximately 0.46.
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m We considered choosing between model, where each
model defined a precise distribution.

m But what if each model defines a whole type of distribution.

m We might not know the precise parameters of the
distribution.

m Compute the evidence or marginal likelihood:

m Marginalise out the unknown parameters to get likelihood
of model.
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Modelling Modelling
Learning as inference Summary of Bayesian Computation

m Define prior model P(D), usually by using

P(D) = f de P(D|6)P(0)
m lts just as if the parameters were nodes in our graphical
model. and defining:

m In fact that is exactly what they are. m The likelihood P(D|0) with parameters 6.

m Latent variables - intrinsic - separate variables for each = The prior distribution (over parameters) P(0]a) which might
data item also be parameterized by hyper-parameters a.

P i tinsi hared Il data it m Conditioning on data to get the posterior distribution over
m Parameters - extrinsic - shared across all data items. parameters P(0]D).

m Using the posterior distribution for prediction (inference)

P(X|D) = f 40 P(x'|0)P(0|D)
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Modelling Modelling
Why not maximize? Recap

We have described learning as an inference procedure. But
why not maximize.

i ?
= Why be Bayesian? Why not compute best parameters and m For Bernoulli likelihood with Beta prior, could do Bayesian

compare? omputation analyticall
m More parameters=better fit to data. ML: bigger is better. ¢ p. o y y _ .
others don't. computation analytically.
Evidence m For Multinomial likelihood and Dirichlet prior, could do
POy Bayesian computation analytically.
ol m Question: are there other distributions for which we can do
2 N analytical Bayesian computations?
S D m |s this a good thing? Discuss.

1

m Prefer models that are unlikely to ‘accidentally’ explain the
data.
m That said, maximum posterior parameters are often good
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Analytical methods

m Yes: conjugate exponential models.
m Good thing: easy to do the sums.

m Bad thing: prior distribution should match beliefs. Does a
Beta distribution match your beliefs? Is it good enough?

m Certainly not always.
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Wait - | didn’t get that!

P(xin) = h(x)g(n) exp (17 u(x))

m More simply....

m Any distribution that can be written such that the interaction
term (between parameters and variables) is log linear in
the parameters is in the exponential family.

mie.

log P(x|n) = Z niu;i(x)+(other stuff that only contains x or 1)

m A distribution may usually be parameterized in a way that
is different from the exponential family form.

m So sometimes useful to convert to exponential family
representation and find the ‘natural’ parameters.
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The Exponential Family
The exponential family

m Any distribution over some x that can be written as

P(xln) = h(x)g(n) exp (1" u(x))

with h and g known, is in the exponential family of
distributions.

m Many of the distributions we have seen are in the

exponential family. A notable exception is the t-distribution.

m The n are called the natural parameters of the distribution.
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The Exponential Family
The exponential family

m Multinomial Distribution

k

P(xl{log pi}) o< exp [Z % log pk)]
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The Exponential Family The Exponential Family

The Gaussian Distribution Definition

m The one dimensional Gaussian distribution is given by

1 (x— )

exp
V2752 202

m u is the mean of the Gaussian and o2 is the variance.
m If =0 and 0% = 1 then N(x; i, 0?) is called a standard

2y _ N
m Need to intro the Gaussian first. Py, 0%) = N(x; p, 0%) =

Gaussian.
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Plot Normalisation

m Remember all distributions must integrate to one. The
V2no? is called a normalisation constant - it ensures this is
the case.

m Hence tighter Gaussians have higher peaks:

m This is a standard one dimensional Gaussian distribution.

m All Gaussians have the same shape subject to scaling and
displacement.

m If x is distributed N(x; 1, %), then y = (x — p)/o is distributed
N(y;0,1).
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m X; mean 0, variance X, not necessarily Gaussian.

m X; subject to various conditions (e.g. IID, light tails).

\/_Zx N(, L)

asymptotically as N — oo.

Amos Storkey — PMR Learning as Inference

The Exponential Family

Multivariate Gaussian: Picture
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Central Limit Theorems Multivariate Gaussian

m The vector x is multivariate Gaussian if for mean uy and
covariance matrix X, it is distributed according to

P(x|u, L) = W exp (—%(x - H)Tz—l(x — y))

m The univariate Gaussian is a special case of this.

m X is called a covariance matrix. It says how much
attributes co-vary. More later.
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The Exponential Family
The exponential family

m Gaussian Distribution
1 _
P(xn) o exp Z M = 5 Z Zijlxixj)
k ij

mn= E‘1p.
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The Exponential Family The Exponential Family

Pause Conjugate exponential models

m If the prior takes the same functional form as the posterior
for a given likelihood, a prior is said to be conjugate for that
likelihood.

m There is a conjugate prior for any exponential family
distribution.

m If the prior and likelihood are conjugate and exponential,
then the the model is said to be conjugate exponential

m In conjugate exponential models, the Bayesian integrals
can be done analytically.
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Conjugacy Conjugacy
m In high dimensional spaces it is hard to accurately estimate m Remember - for conjugate distribution posterior is of the
the parameters using maximum likelihood. Can utilise same form.

Bayesian methods. m So given the data, we just need to update the

m Conjugate distribution for the Gaussian with mean hyperparameters of the prior distribution to get the
parameter is another Gaussian. posterior.

m Conjugate distribution for the Gaussian with precision
(inverse variance) parameter is the Gamma distribution.

m Conjugate distribution for the Gaussian with precision m Gaussian N(g, A™1). Fixed precision A, but g distributed
matrix (inverse covariance is the Wishart distirbution. Ny AgY)
m Conjugate distribution for the Gaussian with both mean m Posterior mean (Ag + nA) ™ (Ao, + nA%)

and precision matrix is the Gaussian-Wishart distribution.

, o _ m Posterior precision (Ag + nA).
m Wishart distribution is distribution over matrices!
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The Exponential Family Bayesian Sets
Conjugacy: Evidence Give me more...

m Gaussian likelihood N(x; u, ), Gaussian prior N(y; u,, Zo)-

Simple case: y, = 0, X known. m Red Orange Yellow Aquamarine

m Marginal likelihood (Evidence)? We know Marginal m Haggis Mountains Loch Celtic Castle
Likelihood is Gaussian. So using x = u + €, € mean 0, m Trees, Forests, Pruning, Parent, Machine Learning,
covariance X, compute mean m and covariance C of Bayesian.

marginal likelihood m Google Sets

m=<(x)=(u)+0=0

C=(xly=(up")y +(ee’y +0=2Z + X
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Bayesian Sets Bayesian Sets
Different features Model

m Data consists of D, and query point x*. Denote by D.
m Two models: M;: D all from same subset C, or My: D,

m Have a large database of objects, each described by from the same subset C, but x from the general distribution
D* (e.g. Web) over all data D+

m Have a small number of examples from the dataset, each O, ©)
with various (binary) features, which we collect into D..

m Want to pick things from D* that ‘belong to the same set’ @6@)\8‘ é@{é &

as those in D,

® How should we do it? m Parameter vector is vector of (Boolean) probabilities, one
for each feature.

m D" is vast, and so presume maximum likelihood estimate
good enough for M1: have vector 07 for this.
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Bayesian Sets
Score

‘ VN /\
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m Parameter vector 6, for subset C is not known. So put a
conjugate prior on the parameters: a Beta distribution for
each component i of the feature vector, with
hyper-parameters a; and b;.

m Compute P(DIM;)/P(DIM,) (called the Bayes Factor).

m The larger this ratio is, the more this favours x* being
included in the set.

m Bayesian Model Comparison: parameters integrated out:

P(DIM,) = fP(DIG)P(GIa)dG
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