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Modelling

Probabilistic Modelling is about building models and using
them.

What do we mean by modelling?
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A Generative Model

Building an idealisation to capture the essential elements
of an item.
Think of a model as a model for future data generation
Given a model (a distribution) we can sample from that
distribution to get artificial data.
Need to specify enough to do this generation.
Often make IID (Independent and Identically Distributed)
Assumption
Models are not truth. They try to capture our uncertainties.
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The Inverse Problem

We built a generative model, or a set of generative models
on the basis of what we know (prior).
Can generate artificial data.
BUT what if we want to learn a good distribution for data
that we then see? How is goodness measured?

Explaining Data
A particular distribution explains the data better if the data is
more probable under that distribution.

The likelihood approach
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Likelihood

P(D|M). The probability of the data D given a distribution
(or model)M. This is called the likelihood of the model.
This is

P(D|M) =

N∏
n=1

P(xn
|M)

i.e. the product of the probabilities of generating each data
point individually.
This is a result of the independence assumption (indep→
product of probabilities by definition).
Try differentM (different distributions). Pick theM with the
highest likelihood→ Maximum Likelihood Approach.
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Bernoulli model

Example
Data: 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1.

Continuous range of hypotheses: M = p - Generated from
a Boolean distribution with P(1|p) = p.
Likelihood of data. Let c=number of ones:

N∏
n=1

P(xn
|p) = pc(1 − p)20−c

Maximum likelihood hypothesis? Differentiate w.r.t. p to
find maximum
In fact usually easier to differentiate log P(D|M): log is
monotonic. So argmax log( f (x)) = argmax f (x).
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Bernoulli model

Example
Data: 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1.

Likelihood of data. Let c=number of ones:

log
N∏

n=1

P(xn
|p) = c log p + (20 − c) log(1 − p)

Set d/dp log P(D|M) = c/p − (20 − c)/(1 − p) to zero to find
maximum.
So c(1 − p) − (20 − c)p = 0. This gives p = c/20. Maximum
likelihood is unsurprising.
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Distributions over Parameters
Parameter bias

Although we are uncertain about the parameter values,
often some are more probable than others.
Uncertainty→ probability: put prior (distribution) on
parameters.
Compute max posterior instead of max likelihood
Bayes Rule:

Posterior → P(p|D) =
P(D|p)P(p)

P(D)
← Prior

P(D) =
∫

dp P(p|D)P(p) does not depend on p.
argmax P(D|p)P(p)
argmax (log P(D|p) + log P(p))← penalty term

Amos Storkey — PMR Learning as Inference 13/43



Modelling The Exponential Family Bayesian Sets

Maximum Posterior

Example
1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1. P(p) ∝ p(1 − p)

Let c=number of ones (9). Then log P(p|D) =

c log p + (20 − c) log(1 − p) + log p + log(1 − p) + const

Set d/dp log P(D|M) = (c + 1)/p− (20− c + 1)/(1− p) to zero
to find maximum.
So (c + 1)(1 − p) − (20 − c + 1)p = 0. This gives
p = (c + 1)/22 = 9/22 ≈ 0.41.
With this prior, max. posterior prefers p closer to 1/2.
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Uncertainty of Parameters

Maximizing the posterior gets us one value for the
parameter.
Is it right?
No it is an estimate. But how good an estimate? There is
some uncertainty. How much?
Uncertainty→ probability.
Find posterior distribution over parameters, not just
maximum.
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Posterior Distribution

Example
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Inference and Marginalisation

Example
1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1. P(p) ∝ p(1 − p)

What is probability of next item x∗ being 1? Predict.
Could take maximum posterior parameter and compute
probability of next item? (≈ 0.41)
But: lots of possible posterior parameters. Some more
possible than others.
Instead marginalise:∫

dp P(x∗ = 1|p)P(p|D)

This gives approximately 0.46.
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Test

We considered choosing between model, where each
model defined a precise distribution.
But what if each model defines a whole type of distribution.
We might not know the precise parameters of the
distribution.
Compute the evidence or marginal likelihood:
Marginalise out the unknown parameters to get likelihood
of model.
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Learning as inference

Its just as if the parameters were nodes in our graphical
model.
In fact that is exactly what they are.
Latent variables - intrinsic - separate variables for each
data item.
Parameters - extrinsic - shared across all data items.
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Summary of Bayesian Computation

Define prior model P(D), usually by using

P(D) =

∫
dθ P(D|θ)P(θ)

and defining:
The likelihood P(D|θ) with parameters θ.
The prior distribution (over parameters) P(θ|α) which might
also be parameterized by hyper-parameters α.

Conditioning on data to get the posterior distribution over
parameters P(θ|D).
Using the posterior distribution for prediction (inference)

P(x∗|D) =

∫
dθ P(x∗|θ)P(θ|D)
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Why not maximize?

We have described learning as an inference procedure. But
why not maximize.

Why be Bayesian? Why not compute best parameters and
compare?
More parameters=better fit to data. ML: bigger is better.
But might be overfitting: only these parameters work. Many
others don’t.

P(D|H )2

P(D|H )1

Evidence

C D
1

Prefer models that are unlikely to ‘accidentally’ explain the
data.
That said, maximum posterior parameters are often good
enough in large data scenarios...Amos Storkey — PMR Learning as Inference 21/43



Modelling The Exponential Family Bayesian Sets

Recap

For Bernoulli likelihood with Beta prior, could do Bayesian
computation analytically.
For Binomial likelihood and Beta prior, could do Bayesian
computation analytically.
For Multinomial likelihood and Dirichlet prior, could do
Bayesian computation analytically.
Question: are there other distributions for which we can do
analytical Bayesian computations?
Is this a good thing? Discuss.
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Analytical methods

Yes: conjugate exponential models.
Good thing: easy to do the sums.
Bad thing: prior distribution should match beliefs. Does a
Beta distribution match your beliefs? Is it good enough?
Certainly not always.
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The exponential family

Any distribution over some x that can be written as

P(x|η) = h(x)g(η) exp
(
ηTu(x)

)
with h and g known, is in the exponential family of
distributions.
Many of the distributions we have seen are in the
exponential family. A notable exception is the t-distribution.
The η are called the natural parameters of the distribution.
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Wait - I didn’t get that!

P(x|η) = h(x)g(η) exp
(
ηTu(x)

)
More simply....
Any distribution that can be written such that the interaction
term (between parameters and variables) is log linear in
the parameters is in the exponential family.
i.e.

log P(x|η) =
∑

i

ηiui(x)+(other stuff that only contains x or η)

A distribution may usually be parameterized in a way that
is different from the exponential family form.
So sometimes useful to convert to exponential family
representation and find the ‘natural’ parameters.
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The exponential family

Multinomial Distribution

P(x|{log pk}) ∝ exp

∑
k

xk log pk)


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The Gaussian Distribution

Need to intro the Gaussian first.
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Definition

The one dimensional Gaussian distribution is given by

P(x|µ, σ2) = N(x;µ, σ2) =
1

√

2πσ2
exp−

(x − µ)2

2σ2

µ is the mean of the Gaussian and σ2 is the variance.
If µ = 0 and σ2 = 1 then N(x;µ, σ2) is called a standard
Gaussian.
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Plot
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This is a standard one dimensional Gaussian distribution.
All Gaussians have the same shape subject to scaling and
displacement.
If x is distributed N(x;µ, σ2), then y = (x− µ)/σ is distributed
N(y; 0, 1).
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Normalisation

Remember all distributions must integrate to one. The
√

2πσ2 is called a normalisation constant - it ensures this is
the case.
Hence tighter Gaussians have higher peaks:
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Central Limit Theorems

Xi mean 0, variance Σ, not necessarily Gaussian.
Xi subject to various conditions (e.g. IID, light tails).

1
√

N

N∑
i=1

Xi ∼ N(0,Σ)

asymptotically as N→∞.
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Multivariate Gaussian

The vector x is multivariate Gaussian if for mean µ and
covariance matrix Σ, it is distributed according to

P(x|µ,Σ) =
1

|(2π)Σ|1/2
exp

(
−

1
2

(x − µ)TΣ−1(x − µ)
)

The univariate Gaussian is a special case of this.
Σ is called a covariance matrix. It says how much
attributes co-vary. More later.
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Multivariate Gaussian: Picture
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The exponential family

Gaussian Distribution

P(x|η) ∝ exp

∑
k

ηkxk −
1
2

∑
i j

Σ−1
i j xix j)


η = Σ−1µ.
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Pause

.
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Conjugate exponential models

If the prior takes the same functional form as the posterior
for a given likelihood, a prior is said to be conjugate for that
likelihood.
There is a conjugate prior for any exponential family
distribution.
If the prior and likelihood are conjugate and exponential,
then the the model is said to be conjugate exponential
In conjugate exponential models, the Bayesian integrals
can be done analytically.
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Conjugacy

In high dimensional spaces it is hard to accurately estimate
the parameters using maximum likelihood. Can utilise
Bayesian methods.
Conjugate distribution for the Gaussian with mean
parameter is another Gaussian.
Conjugate distribution for the Gaussian with precision
(inverse variance) parameter is the Gamma distribution.
Conjugate distribution for the Gaussian with precision
matrix (inverse covariance is the Wishart distirbution.
Conjugate distribution for the Gaussian with both mean
and precision matrix is the Gaussian-Wishart distribution.
Wishart distribution is distribution over matrices!
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Conjugacy

Remember - for conjugate distribution posterior is of the
same form.
So given the data, we just need to update the
hyperparameters of the prior distribution to get the
posterior.

Example

Gaussian N(µ,Λ−1). Fixed precision Λ, but µ distributed
N(µ0,Λ

−1
0 )

Posterior mean (Λ0 + nΛ)−1(Λ0µ0 + nΛx̄)
Posterior precision (Λ0 + nΛ).
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Conjugacy: Evidence

Example
Gaussian likelihood N(x;µ,Σ), Gaussian prior N(µ;µ0,Σ0).
Simple case: µ0 = 0, Σ known.
Marginal likelihood (Evidence)? We know Marginal
Likelihood is Gaussian. So using x = µ + ε, ε mean 0,
covariance Σ, compute mean m and covariance C of
marginal likelihood

m = 〈x〉 = 〈µ〉 + 0 = 0

C = 〈xxT
〉 = 〈µµT

〉 + 〈εεT
〉 + 0 = Σ + Σ0
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Give me more...

Red Orange Yellow Aquamarine
Haggis Mountains Loch Celtic Castle
Trees, Forests, Pruning, Parent, Machine Learning,
Bayesian.
Google Sets
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Different features

Have a large database of objects, each described by
D

+ (e.g. Web)
Have a small number of examples from the dataset, each
with various (binary) features, which we collect into Dc.
Want to pick things from D+ that ‘belong to the same set’
as those in Dc

How should we do it?
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Model

Data consists of Dc and query point x∗. Denote by D.
Two models: M1: D all from same subset C, orM2: Dc
from the same subset C, but x from the general distribution
over all data D+

Parameter vector is vector of (Boolean) probabilities, one
for each feature.
D

+ is vast, and so presume maximum likelihood estimate
good enough forM1: have vector θ+ for this.
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Score

Parameter vector θc for subset C is not known. So put a
conjugate prior on the parameters: a Beta distribution for
each component i of the feature vector, with
hyper-parameters ai and bi.
Compute P(D|M1)/P(D|M2) (called the Bayes Factor).
The larger this ratio is, the more this favours x∗ being
included in the set.
Bayesian Model Comparison: parameters integrated out:

P(D|M2) =

∫
P(D|θ)P(θ|α)dθ
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