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Gaussian Gaussian
Multivariate Gaussian Mahalanobis Distance

B P(xeR)= pr(x)dx

m Multivariate Gaussian ) Tont
ds(xi, xj) = (xi — xj)" E7(x; — X;)

1 1 _
P(X) = W exp {—E(x — ‘LL)TE 1(X — [J)}
m X is the covariance matrix
T =E[(x—p)x—p']

Lij = E[(x; — pi)(xj — )]
m X is symmetric
m Shorthand x ~ N(u, X)
m For p(x) to be a density, £ must be positive definite
m X has d(d + 1)/2 parameters, the mean has a further d
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® d2(x;,x/) is called the Mahalanobis distance between x; and x;
m If L is diagonal, the contours of d% are axis-aligned ellipsoids
m If X is not diagonal, the contours of d% are rotated ellipsoids

L =UAUT

where A is diagonal and U is a rotation matrix

m X is positive definite = entries in A are positive
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[CEUESER Gaussian
Parameterization of the covariance matrix Transformations of Gaussian variables

. m Linear transformations of Gaussian RVs are Gaussian
m Fully general Z = variables are correlated

i . , ’ . . x~ N(u,, X)
m Spherical or isotropic. X = ¢“I. Variables are independent v = Ax + X0
m Diagonal [X];; = 6,-]-01? Variables are independent y ~ N(Ap, +xo, AEAT)
m Rank-constrained: £ = WWT + W, with W being ad x g m Sums of Gaussian RVs are Gaussian
matrix with g < d — 1 and W diagonal. This is the factor Y =X, + X
analysis model. If W = ¢2], then with have the probabilistic E[Y] = E[X1] + E[X>]
principal components analysis (PPCA) model var[Y] = var[X;] + var[X,] + 2covar[ X1, X5]

if X; and X; are independent var[Y] = var[X;] + var[X;]
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[CEWESEN [CEVESEN]
Properties of the Gaussian distribution Graphical Gaussian Models
Example:
m Gaussian has relatively simple analytical properties
m Central limit theorem. Sum (or mean) of M independent random
variables is distributed normally as M — co (subject to a few

general conditions)

m Diagonalization of covariance matrix = rotated variables are

independent
m All marginal and conditional densities of a Gaussian are
Gaussian

m The Gaussian is the distribution that maximizes the entropy

H = - [ p(x)log p(x)dx for fixed mean and covariance m Let X denote pulse rate

m Let Y denote measurement taken by machine 1, and Z
denote measurement taken by machine 2.
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Gaussian [CETESEN

As before
Viode! P(x,y,z) = P(x)P(ylx)P(z|x)
m Viode
X ~ N(is, 02) Show that
Y = py + wy(X = ) + Ny
Z=[Jz+wz(X_[-1x)+Nz Hx
noise N, ~ N(0,2})), N ~ N(0,vY), independent H=] Hy
m (X, Y, Z) is jointly Gaussian; can do inference for X given Hz
Y=yandZ =z Uy Wy Oy W,y
L =| wyox wivx + vly\] WyW- 0y
W50y wywzvx wgvx + Ué\]
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Gaussian [CETWEREN
Inference in Gaussian models Example Inference Problem

m Partition variables into two groups, x; and x,

u=(”1) X =

Ky

T Y=2X+8+N

Iy Ixp = y
m Assume X ~ N(0,1/a), so w, =2, u, =8, and N, ~ N(0,1)
m Show that

Bip = + L1y (0 — 1)
Lip=Ln- LX) o

m For proof see e.g. 2.3.1 of Bishop (2006) (not examinable) P 2 (y—-9)
xly = 57, \Y—
m Formation of joint Gaussian is analogous to formation of joint 4+a

probability table for discrete RVs. Propagation schemes are also var(xly) =
possible for Gaussian RVs.

4+
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Gaussian [CETESEN

Hybrid (discrete + continuous) networks

Example
@ Harvest Model: Given that
m Could discretize continuous variables, but this is ugly, and e Subsidy? = true, cost c is a
gives large CPTs cost ) linear function of &, with a
m Better to use parametric families, e.g. Gaussian multiplication factor w; and
Work iiv wh . q hild ¢ offset by, plus noise with
m Works easily when contlnuou.s nodes are children of variance o;
discrete nodes; we then obtain a conditional Gaussian @
model
P(Cost = c|[Harvest = h, Subsidy? = true) ~ N(wh + by, vy)
Similarly for Subsidy? = false
P(Cost = c|[Harvest = h, Subsidy? = false) ~ N(wsh + bg,vy)
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Factor Analysis Factor Analysis
Factor Analysis

m A latent variable model; can the observations be explained
in terms of a small number of unobserved latent variables ?

™ visible variables : x = (x1,.., %) p(x) is like a multivariate Gaussian pancake
m latent variables: z = (z1,...,zn), z ~ N(O, I;,)
m noise variables: e = (ey,...,¢;), e ~ N(0, V), where p(x|z) ~ N(Wz + pu, W)
W = diag(yq,..., ¢¥g).
Assume p(x) = f p(x|z)p(z)dz
e () ~ N, WWT +)

then covariance structure of x is
C=WW'+w
W is called the factor loadings matrix
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Factor Analysis

m Rotation of solution: if W is a solution, so is WR where
RR” = I,, as (WR)(WR)T = WWT. Causes a problem if we
want to interpret factors. Unique solution can be imposed
by various conditions, e.g. that W/ W-1W is diagonal.

m |s the FA model a simplification of the covariance
structure? A full covariance has d(d + 1)/2 independent
entries. W and W together have d + dm free parameters
(and uniqueness condition above can reduce this). FA
model makes sense if number of free parameters is less
than d(d + 1)/2.
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Factor Analysis
FA example

[from Mardia, Kent & Bibby, table 9.4.1]
m Correlation matrix

mechanics 1 0.553 0547 0.410 0.389
vectors 1 0.610 0.485 0.437
algebra 1 0711 0.665
analysis 1 0.607
statstics 1

m Maximum likelihood FA (impose that WTW-1W is
diagonal). Require m < 2 otherwise more free parameters
than entries in full covariance.
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Factor Analysis Factor Analysis

m=1 m=2 (notrotated) m=2 (rotated)
Variable w1 w1 W» ! w)
1 0.600 0.628 0.372 0.270 0.678
2 0.667 0.696 0.313 0.360  0.673
3 0.917 0.899 -0.050 0.743 0.510
4 0.772 0.779 -0.201 0.740 0317
5 0.724 0.728 -0.200 0.698  0.286

m 1-factor and first factor of the 2-factor solutions differ (cf PCA)

m problem of interpretation due to rotation of factors
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p(zlx) o< p(z)p(x|z)

Posterior is a Gaussian. If z is low dimensional. Can be used for
visualization (as with PCA)

X
A2
data |
atent space
space x=zw Sp
- % /\ Z
Xl
0
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Learning W, W Comparing FA and PCA

m Maximum likelihood solution available (Lawley/Jreskog). m Both are linear methods and model second-order structure
m EM algorithm for ML solution (Rubin and Thayer, 1982) 5
m E-step: for each x;, infer p(z|x;) m FA is invariant to changes in scaling on the axes, but not
m M-step: do linear regression from z to x to get W rotation invariant (cf PCA).
m Choice of m difficult (see Bayesian methods later). m FA models covariance, PCA models variance
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Gaussian Mixutre Models Gaussian Mixutre Models
Hidden Variable Models Mixture Models

m A single Gaussian might be a poor fit

m Simplest form is 2 layer . .
structure

m z hidden (latent) , x
visible (manifest)

m Example 1: z is discrete
— mixture model :

m Example 2: z is
continuous — factor
analysis

m Need mixture models for a multimodal density
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Gaussian Mixutre Models Gaussian Mixutre Models

for each datapoint

m Let z be a 1-of-k indicator variable, with }_;z; = 1. Choose a component with probability 7;
m p(z; = 1) = 7] is the probability of that the jth component is Generate a sample from the chosen component density
active end for

m0<m<1forallj, and 2’]?:171]- =1
m The n;'s are called the mixing proportions

k k
Zp Jp(xlzj = 1) anp(xlej) Q Q
j=1 j=1
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Gaussian Mixutre Models Gaussian Mixutre Models
Responsibilities Max likelihood for mixture models

n K
Sl
pzj=1) p(xlz; = 1) -1 |=

Yepze=1) p(xlze = 1) IL _ Z us Ip(xil0))
_omipilzi=1) Y mep(ilfe) 90,

Y p(Xlze = 1) now use

m The p(x|0;)'s are called the mixture components

v(zj) = p(zji=1x) =

8p(x|6)_ (x[6 )81np(x,-|6j)
00, PP T 5,

81np (xi10;)
5o = L) =5

m )(z;) is the posterior probability (or responsibility) for
component j to have generated datapoint x and therefore
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Gaussian Mixutre Models Gaussian Mixutre Models

Example: 1-d Gaussian mixture

At a maximum, set derivatives = 0

2
X — U;
P(X|9j) — s Xp — ﬂ Z{l (Z")X‘
(2710/‘)1/2 20? 8= i=1 V\Zij)Xi
Iy y
JL (i — ) Znizl 7(zi)) .
3_!11‘ - Z y(Zij) 52 [72 B Zi:l )/(Zi/')(xi — [.l])
L1 (;. D ] L 763)
ok _ 1 Y e L o1
80]2. 2 le v i) a? o*? =7 Z 7 (zi))-
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Gaussian Mixutre Models Gaussian Mixutre Models

Example
Generalize to multivariate case
Initial configuration Final configuration
) N N N
n . ) N
o= Y1 Y (zipxi co
= = A
] 2121 V(Zij) '@; @
n 7 ST R A
o Xz V(@K = )k = ) :
I Z?:l V(Zl]) Mixture p(x) Posteriors P(j|x)
1 2 Component 1: !
A T B o p§£4,97,—0‘10) N 0.8
n/ n Z y(zl])' ' ;;uo:fg.io 0.6
! 0 Component 2: 0.4
1 o H5011-019) R
0°=0.46 0.2
- : prior = 0.60
0
0 2 4 6 100 200
m What happens if a component becomes responsible for a (Tipping, 1999)
single data point?
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Gaussian Mixutre Models Gaussian Mixutre Models
Example 2 Kullback-Leibler divergence

Initial configuration Final configuration . . . -
: R TN m Measuring the “distance” between two probability densities P(x)
o . i '.~::"'e and Q(x).
Tt P(xi)
: . KL(P|IQ) = ZP (x)1
N %8 Q)
i ) } m Also called the relative entropy
Mixture p(x) Posteriors P(j|x) . . .
component . 1 m Using logz < z—1, can show that KL(P||Q) > 0 with equality
o H= £109§9009) 08 when P = Q
prior = 0.42 0.6
Component 2 0s m Note that KL(P||Q) # KL(Q|IP)
o u (0.15,0.01)
0?=051 02
prior = 0.58
0
-1 0 1 2 3 100 200
(Tipping, 1999)
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Gaussian Mixutre Models Gaussian Mixutre Models
The EM algorithm The EM algorithm

m Q: How do we estimate parameters of a Gaussian mixture
distribution?

N . EM = Expectation-Maximization
m A: Use the re-estimation equations

m Applies where there is incomplete (or missing) data

; m [f this data were known a maximum likelihood solution would be
o X VG relatively easy

[’lj = n B

Zniﬂ V(i) m In a mixture model, the missing knowledge is which component
s L V@i = ) generated a given data point
j

6' — n
Liz V(zij) m Although EM can have slow convergence to the local maximum,
P 1 Z (i) it is usually relatively simple and easy to implement. For
/ V&) Gaussian mixtures it is the method of choice.

m This is intuitively reasonable, but the EM algorithm shows that
these updates will converge to a local maximum of the likelihood
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The nitty-gritty

The nitty-gritty

L(6) = ) Inp(xi|6)

i=1

Consider for just one x first

_ px,2l0)

PO i, 0)

SO
log p(x|0) = log p(x, z|0) — log p(z|x, O).

Now take expectations wrt p(z|x, 0°)

log p(x|6) = Z p(zlx, 6°) log p(x, z|6) — Z p(zlx, 6°) log p(zlx, 6)

Zi
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Gaussian Mixutre Models

From the non-negativity of the KL divergence, note that
Li(gi, 0) < logp(xi|0)
i.e. Li(gi,0) is a lower bound on the log likelihood

We now set q(z;) = p(zilx;, 0°) [E step]

Li(g:,0) = ) plzibxi, 0°) log p(x;, zil0) = ) p(zilxi, 0°) log p(zilx;, 0°)

def Qi(016°™) + H(g:)

Notice that H(g;) is independent of 0 (as opposed to 6° )
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L(0) = ) Inp(x0)

i=1
Consider for just one x; first
log p(xi|0) = log p(xi, z;|0) — log p(zilx;, O).

Now introduce g(z;) and take expectations

logp(xl0) = Y 4(zi) log p(xi, z10) - )\ a(z) log p(zilx;, 0)
Z; Zi

_ Vi PO, zil0) o plzilx;, 6)
- Z q(z;) log —q(z,-) Z q(z;) log —Q(Zi)

Zi Zi

= Li(qi, 0) + KL(gillpi)
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Gaussian Mixutre Models

Now sum overcasesi=1,...,n

L(g,0) = ) Li{q;,0) < ) logp(xil0)

i=1 i=1
and

£g,0) =) Q616" + Y H(g)

i=1 i=1
def Q(O16°%) + )" H(g)
i=1
where Q is called the expected complete-data log likelihood.
Thus to increase £(g, 0) wrt 0 we need only increase Q(0|6°)
Best to choose [M step]
6 = argmax,Q(00°?)
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Gaussian Mixutre Models Gaussian Mixutre Models
T T T
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Gaussian Mixutre Models

EM algorithm: Summary

E-step Calculate Q(0]6°) using the responsibilities p(zilx;, 0°%)
M-step Maximize Q(0]6°) wrt 8

EM algorithm for mixtures of Gaussians

n ae. OldY 4
new Zz:ﬂl P(]|xu6 )xz
! i1 p(jlxi, 6°7)
Ly p (e, 0°0)(xi — )
Yitq p(jlxi, 6°7)

new 1 - . 01
e e =) p(l, 6°).
i=1

(O_?)m)w —

[Do mixture of Gaussians demo here]
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gold gnew
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Gaussian Mixutre Models

k-means clustering

initialize centres u,, ..., W,
while (not terminated)
fori=1,...,n
calculate |x; — y].|2 for all centres
assign datapoint i to the closest centre
end for
recompute each y; as the mean of the
datapoints assigned to it
end while

k-means algorithm is equivalent to the EM algorithm for
spherical covariances 0]21 in the limit o? — 0 forall j
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