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Multivariate Gaussian

P(x ∈ R) =
∫
R p(x)dx

Multivariate Gaussian

p(x) =
1

(2π)d/2|Σ|1/2 exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}

Σ is the covariance matrix

Σ = E[(x − µ)(x − µ)T]

Σi j = E[(xi − µi)(x j − µ j)]

Σ is symmetric
Shorthand x ∼ N(µ,Σ)
For p(x) to be a density, Σ must be positive definite
Σ has d(d + 1)/2 parameters, the mean has a further d
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Mahalanobis Distance

d2
Σ(xi, x j) = (xi − x j)TΣ−1(xi − x j)

d2
Σ

(xi, x j) is called the Mahalanobis distance between xi and x j

If Σ is diagonal, the contours of d2
Σ

are axis-aligned ellipsoids

If Σ is not diagonal, the contours of d2
Σ

are rotated ellipsoids

Σ = UΛUT

where Λ is diagonal and U is a rotation matrix

Σ is positive definite⇒ entries in Λ are positive
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Parameterization of the covariance matrix

Fully general Σ =⇒ variables are correlated
Spherical or isotropic. Σ = σ2I. Variables are independent
Diagonal [Σ]i j = δi jσ2

i Variables are independent

Rank-constrained: Σ = WWT +Ψ, with W being a d × q
matrix with q < d − 1 andΨ diagonal. This is the factor
analysis model. IfΨ = σ2I, then with have the probabilistic
principal components analysis (PPCA) model
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Transformations of Gaussian variables

Linear transformations of Gaussian RVs are Gaussian

x ∼ N(µx,Σ)
y = Ax + x0
y ∼ N(Aµx + x0,AΣAT)

Sums of Gaussian RVs are Gaussian

Y = X1 + X2
E[Y] = E[X1] + E[X2]
var[Y] = var[X1] + var[X2] + 2covar[X1,X2]
if X1 and X2 are independent var[Y] = var[X1] + var[X2]
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Properties of the Gaussian distribution

Gaussian has relatively simple analytical properties

Central limit theorem. Sum (or mean) of M independent random
variables is distributed normally as M→∞ (subject to a few
general conditions)

Diagonalization of covariance matrix =⇒ rotated variables are
independent

All marginal and conditional densities of a Gaussian are
Gaussian

The Gaussian is the distribution that maximizes the entropy
H = −

∫
p(x) log p(x)dx for fixed mean and covariance
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Graphical Gaussian Models

Example:

x

y z

Let X denote pulse rate
Let Y denote measurement taken by machine 1, and Z
denote measurement taken by machine 2.
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Model
X ∼ N(µx, vx)
Y = µy + wy(X − µx) + Ny
Z = µz + wz(X − µx) + Nz
noise Ny ∼ N(0, vN

y ), Nz ∼ N(0, vN
z ), independent

(X,Y,Z) is jointly Gaussian; can do inference for X given
Y = y and Z = z

Amos Storkey — PMR: Gaussians, Factor Analysis, Mixutres 11/46

Gaussian Factor Analysis Gaussian Mixutre Models

As before
P(x, y, z) = P(x)P(y|x)P(z|x)

Show that

µ =



µx
µy
µz




Σ =




vx wyvx wzvx
wyvx w2

yvx + vN
y wywzvx

wzvx wywzvx w2
zvx + vN

z



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Inference in Gaussian models

Partition variables into two groups, x1 and x2

µ =

(
µ1
µ2

)

Σ =

(
Σ11 Σ12
Σ21 Σ22

)

µc
1|2 = µ1 + Σ12Σ

−1
22 (x2 − µ2)

Σc
1|2 = Σ11 − Σ12Σ

−1
22Σ21

For proof see e.g. 2.3.1 of Bishop (2006) (not examinable)

Formation of joint Gaussian is analogous to formation of joint
probability table for discrete RVs. Propagation schemes are also
possible for Gaussian RVs.
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Example Inference Problem

X Y
Y = 2X + 8 + Ny

Assume X ∼ N(0, 1/α), so wy = 2, µy = 8, and Ny ∼ N(0, 1)

Show that

µx|y =
2

4 + α
(y − 8)

var(x|y) =
1

4 + α
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Hybrid (discrete + continuous) networks

Could discretize continuous variables, but this is ugly, and
gives large CPTs
Better to use parametric families, e.g. Gaussian
Works easily when continuous nodes are children of
discrete nodes; we then obtain a conditional Gaussian
model
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Example

Buys

Cost

Subsidy? Harvest Model: Given that
Subsidy? = true, cost c is a
linear function of h, with a
multiplication factor wt and
offset bt, plus noise with
variance vt

P(Cost = c|Harvest = h,Subsidy? = true) ∼ N(wth + bt, vt)

Similarly for Subsidy? = f alse

P(Cost = c|Harvest = h,Subsidy? = f alse) ∼ N(w f h + b f , v f )
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Factor Analysis

A latent variable model; can the observations be explained
in terms of a small number of unobserved latent variables ?
visible variables : x = (x1, . . . , xd),
latent variables: z = (z1, . . . , zm), z ∼ N(0, Im)
noise variables: e = (e1, . . . , ed), e ∼ N(0,Ψ), where
Ψ = diag(ψ1, . . . , ψd).

Assume
x = µ + Wz + e

then covariance structure of x is

C = WWT +Ψ

W is called the factor loadings matrix

Amos Storkey — PMR: Gaussians, Factor Analysis, Mixutres 17/46

Gaussian Factor Analysis Gaussian Mixutre Models

p(x) is like a multivariate Gaussian pancake

p(x|z) ∼ N(Wz + µ,Ψ)

p(x) =

∫
p(x|z)p(z)dz

p(x) ∼ N(µ,WWT + Ψ)
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Rotation of solution: if W is a solution, so is WR where
RRT = Im as (WR)(WR)T = WWT. Causes a problem if we
want to interpret factors. Unique solution can be imposed
by various conditions, e.g. that WTΨ−1W is diagonal.
Is the FA model a simplification of the covariance
structure? A full covariance has d(d + 1)/2 independent
entries. Ψ and W together have d + dm free parameters
(and uniqueness condition above can reduce this). FA
model makes sense if number of free parameters is less
than d(d + 1)/2.
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FA example

[from Mardia, Kent & Bibby, table 9.4.1]
Correlation matrix

mechanics
vectors
algebra
analysis
statstics




1 0.553 0.547 0.410 0.389
1 0.610 0.485 0.437

1 0.711 0.665
1 0.607

1




Maximum likelihood FA (impose that WTΨ−1W is
diagonal). Require m ≤ 2 otherwise more free parameters
than entries in full covariance.
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m = 1 m = 2 (not rotated) m = 2 (rotated)
Variable w1 w1 w2 w′1 w′2

1 0.600 0.628 0.372 0.270 0.678
2 0.667 0.696 0.313 0.360 0.673
3 0.917 0.899 -0.050 0.743 0.510
4 0.772 0.779 -0.201 0.740 0.317
5 0.724 0.728 -0.200 0.698 0.286

1-factor and first factor of the 2-factor solutions differ (cf PCA)

problem of interpretation due to rotation of factors
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FA for visualization

p(z|x) ∝ p(z)p(x|z)

Posterior is a Gaussian. If z is low dimensional. Can be used for
visualization (as with PCA)

x

x

o

= z wx

1

2

data
space

z

0

.

.

latent space
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Learning W,Ψ

Maximum likelihood solution available (Lawley/Jreskog).
EM algorithm for ML solution (Rubin and Thayer, 1982)

E-step: for each xi, infer p(z|xi)
M-step: do linear regression from z to x to get W

Choice of m difficult (see Bayesian methods later).
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Comparing FA and PCA

Both are linear methods and model second-order structure
S
FA is invariant to changes in scaling on the axes, but not
rotation invariant (cf PCA).
FA models covariance, PCA models variance
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Hidden Variable Models

Simplest form is 2 layer
structure
z hidden (latent) , x
visible (manifest)
Example 1: z is discrete
→ mixture model
Example 2: z is
continuous→ factor
analysis
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Mixture Models

A single Gaussian might be a poor fit
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Need mixture models for a multimodal density
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Let z be a 1-of-k indicator variable, with
∑

j z j = 1.
p(z j = 1) = π j is the probability of that the jth component is
active
0 ≤ π j ≤ 1 for all j, and

∑k
j=1 π j = 1

The π j’s are called the mixing proportions

p(x) =

k∑

j=1

p(z j = 1)p(x|z j = 1) =

k∑

j=1

π jp(x|θ j)

The p(x|θ j)’s are called the mixture components
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Generating data from a mixture distribution

for each datapoint
Choose a component with probability π j
Generate a sample from the chosen component density

end for
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Responsibilities

γ(z j) ≡ p(z j = 1|x) =
p(z j = 1) p(x|z j = 1)∑
` p(z` = 1) p(x|z` = 1)

=
π j p(x|z j = 1)∑
` π` p(x|z` = 1)

γ(z j) is the posterior probability (or responsibility) for
component j to have generated datapoint x
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Max likelihood for mixture models

L(θ) =

n∑

i=1

ln



k∑

j=1

π jp(xi|θ j)



∂L
∂θ j

=
∑

i

π j∑
` π`p(xi|θ`)

∂p(xi|θ j)
∂θ j

now use
∂p(xi|θ j)
∂θ j

= p(xi|θ j)
∂ ln p(xi|θ j)

∂θ j

and therefore
∂L
∂θ j

=
∑

i

γ(zi j)
∂ ln p(xi|θ j)

∂θ j
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Example: 1-d Gaussian mixture

p(x|θ j) =
1

(2πσ2
j )

1/2
exp−


(x − µ j)2

2σ2
j



∂L
∂µ j

=
∑

i

γ(zi j)
(xi − µ j)

σ2
j

∂L
∂σ2

j

=
1
2

∑

i

γ(zi j)



(xi − µ j)2

σ4
j

− 1
σ2

j



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At a maximum, set derivatives = 0

µ̂ j =

∑n
i=1 γ(zi j)xi∑n

i=1 γ(zi j)

σ̂2
j =

∑n
i=1 γ(zi j)(xi − µ̂ j)2

∑n
i=1 γ(zi j)

π̂ j =
1
n

∑

i

γ(zi j).
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Generalize to multivariate case

µ̂ j =

∑n
i=1 γ(zi j)xi∑n

i=1 γ(zi j)

Σ̂ j =

∑n
i=1 γ(zi j)(xi − µ̂ j)(xi − µ̂ j)

T

∑n
i=1 γ(zi j)

π̂ j =
1
n

∑

i

γ(zi j).

What happens if a component becomes responsible for a
single data point?
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Example

0 2 4 6
−2

−1

0

1

2

Initial configuration Final configuration

0 2 4 6
−2

−1

0

1

2

Mixture p(x) Posteriors P(j|x)

100 200

1

2

0

0.2

0.4

0.6

0.8

1
Component 1:
µ = (4.97,−0.10) 
 σ2 = 0.60
prior = 0.40

Component 2:
µ = (0.11,−0.15) 
 σ2 = 0.46
prior = 0.60

(Tipping, 1999)
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Example 2

−1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

Initial configuration Final configuration

−1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

Mixture p(x) Posteriors P(j|x)

100 200

1

2

0

0.2

0.4

0.6

0.8

1
Component 1:
µ = (1.98,0.09) 
 σ2 = 0.49
prior = 0.42

Component 2:
µ = (0.15,0.01) 
 σ2 = 0.51
prior = 0.58

(Tipping, 1999)
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Kullback-Leibler divergence

Measuring the “distance” between two probability densities P(x)
and Q(x).

KL(P||Q) =
∑

i

P(xi) log
P(xi)
Q(xi)

Also called the relative entropy

Using log z ≤ z − 1, can show that KL(P||Q) ≥ 0 with equality
when P = Q.

Note that KL(P||Q) , KL(Q||P)
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The EM algorithm

Q: How do we estimate parameters of a Gaussian mixture
distribution?

A: Use the re-estimation equations

µ̂ j ←
∑n

i=1 γ(zi j)xi∑n
i=1 γ(zi j)

σ̂2
j ←

∑n
i=1 γ(zi j)(xi − µ̂ j)2

∑n
i=1 γ(zi j)

π̂ j ← 1
n

∑

i

γ(zi j).

This is intuitively reasonable, but the EM algorithm shows that
these updates will converge to a local maximum of the likelihood
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The EM algorithm

EM = Expectation-Maximization

Applies where there is incomplete (or missing) data

If this data were known a maximum likelihood solution would be
relatively easy

In a mixture model, the missing knowledge is which component
generated a given data point

Although EM can have slow convergence to the local maximum,
it is usually relatively simple and easy to implement. For
Gaussian mixtures it is the method of choice.
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The nitty-gritty

L(θ) =

n∑

i=1

ln p(xi|θ)

Consider for just one x first

p(x|θ) =
p(x, z|θ)
p(z|x, θ)

so
log p(x|θ) = log p(x, z|θ) − log p(z|x, θ).

Now take expectations wrt p(z|x, θold)

log p(x|θ) =
∑

z
p(z|x, θold) log p(x, z|θ) −

∑

zi

p(z|x, θold) log p(z|x, θ)
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The nitty-gritty

L(θ) =

n∑

i=1

ln p(xi|θ)

Consider for just one xi first

log p(xi|θ) = log p(xi, zi|θ) − log p(zi|xi, θ).

Now introduce q(zi) and take expectations

log p(xi|θ) =
∑

zi

q(zi) log p(xi, zi|θ) −
∑

zi

q(zi) log p(zi|xi, θ)

=
∑

zi

q(zi) log
p(xi, zi|θ)

q(zi)
−

∑

zi

q(zi) log
p(zi|xi, θ)

q(zi)

:= Li(qi, θ) + KL(qi||pi)
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From the non-negativity of the KL divergence, note that

Li(qi, θ) ≤ log p(xi|θ)

i.e. Li(qi, θ) is a lower bound on the log likelihood

We now set q(zi) = p(zi|xi, θold) [E step]

Li(qi, θ) =
∑

zi

p(zi|xi, θ
old) log p(xi, zi|θ) −

∑

zi

p(zi|xi, θ
old) log p(zi|xi, θ

old)

=

de f Qi(θ|θold) + H(qi)

Notice that H(qi) is independent of θ (as opposed to θold )
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Now sum over cases i = 1, . . . ,n

L(q, θ) =

n∑

i=1

Li(qi, θ) ≤
n∑

i=1

log p(xi|θ)

and

L(q, θ) =

n∑

i=1

Qi(θ|θold) +

n∑

i=1

H(qi)

=

de f Q(θ|θold) +

n∑

i=1

H(qi)

where Q is called the expected complete-data log likelihood.
Thus to increase L(q, θ) wrt θ we need only increase Q(θ|θold)

Best to choose [M step]

θ = argmaxθQ(θ|θold)
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θold θnew

L (q, θ)

ln p(X|θ)

Chris Bishop, PRML 2006
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EM algorithm: Summary

E-step Calculate Q(θ|θold) using the responsibilities p(zi|xi, θold)

M-step Maximize Q(θ|θold) wrt θ

EM algorithm for mixtures of Gaussians

µnew
j ←

∑n
i=1 p( j|xi, θold)xi∑n

i=1 p( j|xi, θold)

(σ2
j )

new ←
∑n

i=1 p( j|xi, θold)(xi − µnew
j )2

∑n
i=1 p( j|xi, θold)

πnew
j ← 1

n

n∑

i=1

p( j|xi, θ
old).

[Do mixture of Gaussians demo here]
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k-means clustering

initialize centres µ1, . . . ,µk
while (not terminated)

for i = 1, . . . ,n
calculate |xi − µ j|2 for all centres
assign datapoint i to the closest centre

end for
recompute each µ j as the mean of the
datapoints assigned to it

end while

k-means algorithm is equivalent to the EM algorithm for
spherical covariances σ2

j I in the limit σ2
j → 0 for all j
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