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[CEURTIE]
Multivariate Gaussian

B P(x€R) = [, p(x)dx
m Multivariate Gaussian
R SN R YRS O

P00 = s o {36 W E - )

m X is the covariance matrix
L =E[(x-wx-p']
Lij = E[(xi — pa)(xj — p))]

m X is symmetric
m Shorthand x ~ N(y, X)
m For p(x) to be a density, X must be positive definite
m X has d(d + 1)/2 parameters, the mean has a further d
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[CEURTIE]
Mahalanobis Distance

dy(xi, x;) = (xi — x;) E7 (x; — x))

] di(x,-,x]-) is called the Mahalanobis distance between x; and x;
m If £ is diagonal, the contours of d% are axis-aligned ellipsoids

m If I is not diagonal, the contours of d% are rotated ellipsoids
L =UAU"

where A is diagonal and U is a rotation matrix

m X is positive definite = entries in A are positive
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[CEVESEY]

Parameterization of the covariance matrix

m Fully general X — variables are correlated

m Spherical or isotropic. £ = ¢°I. Variables are independent

m Diagonal [X];; = 5,-]-01.2 Variables are independent

m Rank-constrained: £ = WWT + W, with W being ad X g
matrix with g < d — 1 and W diagonal. This is the factor

analysis model. If W = ¢2I, then with have the probabilistic
principal components analysis (PPCA) model
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[CEVESEY]

Transformations of Gaussian variables

m Linear transformations of Gaussian RVs are Gaussian

x ~ N(u,, X)
y = Ax + X
y ~ N(Ap, +xo, AEAT)

m Sums of Gaussian RVs are Gaussian

Y=X;+X>

E[Y] = E[Xi] + E[X:]

var[Y] = var[X;] + var[X5] + 2covar[ X7, X5]

if X; and X, are independent var[Y] = var[X;] + var[X;]
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[CEVESEY]

Properties of the Gaussian distribution

m Gaussian has relatively simple analytical properties

m Central limit theorem. Sum (or mean) of M independent random
variables is distributed normally as M — oo (subject to a few
general conditions)

m Diagonalization of covariance matrix = rotated variables are
independent

m All marginal and conditional densities of a Gaussian are
Gaussian

m The Gaussian is the distribution that maximizes the entropy
H = - [ p(x) log p(x)dx for fixed mean and covariance
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[CEUENEY]
Graphical Gaussian Models

Example:

()
) 9

m Let X denote pulse rate

m Let Y denote measurement taken by machine 1, and Z
denote measurement taken by machine 2.
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[CEVESEY]

m Model
X ~ N([Jx/ Uy)
Y = py +wy (X — py) + Ny
Z = Uy + wo(X — py) + N,
noise N, ~ N(0,v})), N; ~ N(0,vY), independent
m (X,Y,Z)is jointly Gaussian; can do inference for X given
Y=yandZ =1z
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[CEVESEY]

As before
P(x, y,z) = P(x)P(ylx)P(zlx)
Show that
Hx
=1 Hy
Uz
L=| wyvx wivx + vly\’ Wy W7 Vx

Wz0y  WyW;Vy w20y + oY
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[CEURTIE]
Inference in Gaussian models

m Partition variables into two groups, x; and x;
| & )
¥ ( K

I I
Yy =
( Ly Iy )

K = By + Xy 00 — 1)

Lp=Xn- DRPY Iy 2

m For proof see e.g. 2.3.1 of Bishop (2006) (not examinable)

m Formation of joint Gaussian is analogous to formation of joint
probability table for discrete RVs. Propagation schemes are also
possible for Gaussian RVs.
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[CEVESEY]
Example Inference Problem

X =

Y=2X+8+N,

m Assume X ~ N(0,1/a), so w, = 2, u, =8, and N, ~ N(0,1)
m Show that

2
Hxly = m(]/ -8)

1
var(xly) = ./
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[CEVESEY]

Hybrid (discrete + continuous) networks

m Could discretize continuous variables, but this is ugly, and
gives large CPTs

m Better to use parametric families, e.g. Gaussian

m Works easily when continuous nodes are children of
discrete nodes; we then obtain a conditional Gaussian
model
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[CEVESEY]

Example

Harvest Model: Given that
/ Subsidy? = true, costcis a

@ linear function of &, with a

multiplication factor w; and
offset by, plus noise with

variance v;
P(Cost = c|[Harvest = h, Subsidy? = true) ~ N(w¢h + by, vy)
Similarly for Subsidy? = false
P(Cost = c|[Harvest = h, Subsidy? = false) ~ N(wsh + by, vf)
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Factor Analysis
Factor Analysis

m A latent variable model; can the observations be explained
in terms of a small number of unobserved latent variables ?

m visible variables : x = (x1,...,x4),

m latent variables: z = (z1,...,2zm), z ~ N(0, I;)

B noise variables: e = (ey,...,¢4), e ~ N(0, V), where
W = diag(l]bl, .. .,I]Dd).

Assume
x=pu+Wz+e

then covariance structure of x is
C=WW +w
W is called the factor loadings matrix
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Factor Analysis

p(x) is like a multivariate Gaussian pancake
p(x|z) ~ N(Wz + pu, W)

p(x) = f p(xlz)p(z)dz

p(x) ~ N(u, WWT + W)
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Factor Analysis

m Rotation of solution: if W is a solution, so is WR where
RR” = I,, as (WR)(WR)" = WWT. Causes a problem if we
want to interpret factors. Unique solution can be imposed
by various conditions, e.g. that W'W~1W is diagonal.

m Is the FA model a simplification of the covariance
structure? A full covariance has d(d + 1)/2 independent
entries. W and W together have d + dm free parameters
(and uniqueness condition above can reduce this). FA
model makes sense if number of free parameters is less
than d(d + 1)/2.
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Factor Analysis
FA example

[from Mardia, Kent & Bibby, table 9.4.1]
m Correlation matrix

mechanics 1 0553 0.547 0.410 0.389
vectors 1 0.610 0.485 0.437
algebra 1 0.711 0.665
analysis 1 0.607
statstics 1

m Maximum likelihood FA (impose that WW~1W is
diagonal). Require m < 2 otherwise more free parameters
than entries in full covariance.
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Factor Analysis

m=1 m=2 (notrotated) m=2 (rotated)

Variable w1 w1 Wo Wi w)
1 0.600 0.628 0.372 0.270 0.678
2 0.667 0.696 0.313 0.360 0.673
3 0.917 0.899 -0.050 0.743 0.510
4 0.772 0.779 -0.201 0.740 0.317
5 0.724 0.728 -0.200 0.698 0.286

m 1-factor and first factor of the 2-factor solutions differ (cf PCA)

m problem of interpretation due to rotation of factors
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Factor Analysis
FA for visualization

Posterior is a Gaussian. If z is low dimensional. Can be used for

p(zlx) e p(z)p(x|z)

visualization (as with PCA)

data

A

X,

[

I=

Y
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Factor Analysis
Learning W, W

m Maximum likelihood solution available (Lawley/Jreskog).
m EM algorithm for ML solution (Rubin and Thayer, 1982)

m E-step: for each x;, infer p(z|x;)
m M-step: do linear regression from z to x to get W

m Choice of m difficult (see Bayesian methods later).
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Comparing FA and PCA

m Both are linear methods and model second-order structure
S

m FA is invariant to changes in scaling on the axes, but not
rotation invariant (cf PCA).

m FA models covariance, PCA models variance
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Gaussian Mixutre Models

Hidden Variable Models

m Simplest form is 2 layer
structure

m z hidden (latent) , x
visible (manifest)

m Example 1: z is discrete
— mixture model

m Example 2: z is
continuous — factor
analysis
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Gaussian Mixutre Models

Mixture Models

m A single Gaussian might be a poor fit

m Need mixture models for a multimodal density
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Gaussian Mixutre Models

m Let z be a 1-of-k indicator variable, with Z]-z]- =1

m p(z; = 1) = 7; is the probability of that the jth component is
active

m0<n;<lforalljand ¥ m=1

m The 7t;'s are called the mixing proportions

k k
p(x) =Y plzj = Dp(xlz; =1) = ) mp(xI0))
j=1

j=1

m The p(x|0;)’s are called the mixture components
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Gaussian Mixutre Models

Generating data from a mixture distribution

for each datapoint
Choose a component with probability 7;
Generate a sample from the chosen component density

§
NG

O
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Gaussian Mixutre Models

Responsibilities

o pzi=1) plxzp=1)
~ Xep(ze =1) p(xlze = 1)
T p(xzj = 1)

C Yeme pxlze = 1)

r(z) =p(z = 11X

m y(z)) is the posterior probability (or responsibility) for
component j to have generated datapoint x
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Gaussian Mixutre Models

Max likelihood for mixture models

n k
L) = Z In {Z n]-p(inQj)}
i=1 j=1
JL Z uéd Ip(xil0;)
36] - Z[ ﬂgp(xileg) 36]'

Ip(xil0)) JInp(xil0))
50, =PI —55—

now use

and therefore I p(xl0))
JL 9 Inpxil0;
56 = L@ 3¢
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Gaussian Mixutre Models

Example: 1-d Gaussian mixture

1 (x = uj)?
p(xle]) = (27'(02.)1/2 eXp _{ 2(7?
a‘u] Z ( l] (72.
(i —u)* 1
a_ - zlﬂzl'f)[T‘a—]z
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Gaussian Mixutre Models

At a maximum, set derivatives = 0

A

~ Zity ()

a Yitq V(zij)
52 = i V)0 = )
! Yoy V(zi))

. 1
ﬂj = E Z y(Zl’]‘).
i
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Gaussian Mixutre Models

Generalize to multivariate case

I X))
$ Ly y(@ij)(xi = f2)(xi — p].)T

- Yl v(zij)
. 1
71]' = ; Z )/(Zl']').

m What happens if a component becomes responsible for a
single data point?
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Gaussian Mixutre Models

Final configuration

Mixture p(x)

2 Component 1:
o M3 (4.97,-0.10)
1 =0.60
prior = 0.40
0
Component 2:
o 1 =(0.11,-0.15)
® o*=046
rior = 0.60
-2 . P

0 2 4 6

(Tipping, 1999)
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Gaussian Factor Analysis  Gaussian Mixutre Models

Example 2

Initial configuration Final configuration

Mixture p(x) Posteriors P(j|x)

1
15 Component 1:
. 1= (1.98,0.09) 0.8
® =049 o
0.5 prior = 0.42 0.6
0
-05 Component 2: 04
1 =(0.15,0.01)
-t - ® =051 2 02
-15 prior = 0.58
0

-1 0 1 2 3 100 200

(Tipping, 1999)
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Gaussian Mixutre Models

Kullback-Leibler divergence

m Measuring the “distance” between two probability densities P(x)
and Q(x).
P(x;)

KL(PIQ) = Z P(x)log 5

m Also called the relative entropy

m Using logz < z — 1, can show that KL(P||Q) > 0 with equality
when P = Q.

m Note that KL(P||Q) # KL(Q||P)
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Gaussian Mixutre Models
The EM algorithm

m Q: How do we estimate parameters of a Gaussian mixture
distribution?

m A: Use the re-estimation equations

. Yimq Y (zij)xi
Hi < < -
Yin1 V(ZIJ)
o i v - )
5% — -
/ Yie1 V(zi))

1
T(]' — Z Z)/(le)

m This is intuitively reasonable, but the EM algorithm shows that
these updates will converge to a local maximum of the likelihood
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Gaussian Mixutre Models
The EM algorithm

EM = Expectation-Maximization

m Applies where there is incomplete (or missing) data

m If this data were known a maximum likelihood solution would be
relatively easy

m In a mixture model, the missing knowledge is which component
generated a given data point

m Although EM can have slow convergence to the local maximum,
it is usually relatively simple and easy to implement. For
Gaussian mixtures it is the method of choice.
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The nitty-gritty

L(6) = ) Inp(xil6)
i=1

Consider for just one x first

_ p(xz|0)
- plzlx, 0)

p(x10)

SO
log p(x|0) = log p(x, z|0) — log p(z|x, 0).

Now take expectations wrt p(z|x, 0°)

log p(x|0) = Z p(zlx, 6°) log p(x, z|0) — Z p(zlx, ) log p(z|x, 6)
y4

Zi
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The nitty-gritty

n
L) = ), Inp(x6)
i=1
Consider for just one x; first
log p(xi|0) = log p(x;, zi|0) — log p(zilx;, 0).

Now introduce g(z;) and take expectations

log p(x;|6) = Zq )log p(x;, z;|6) — Zq(z )log p(zilx;, 6)

P(Xzz Zzle P(Zi|xi/ 0)
Z q(z Z q(zi)1 8 Gy
= Li(qz‘, 0) + KL(quIPz‘)
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Gaussian Mixutre Models

From the non-negativity of the KL divergence, note that
Li(qi, 0) < logp(xil0)

i.e. Li(gi, 0) is a lower bound on the log likelihood

We now set g(z;) = p(zilx;, 0°%) [E step]

L£iq,0) = Y plailxi, 0 log p(xi, z10) — Y p(zilxi, 6°%) log p(zilx;, 6°%)

def Qi(016°™) + H(g.)

Notice that H(g;) is independent of 6 (as opposed to 6° )
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Gaussian Mixutre Models

Now sum overcasesi=1,...,n
£04,0)= ) Li(g;,0)< Y logp(xil6)
i=1 i=1
and

L(g,0)= ) Q616" + ) H(g)
i=1 i=1

def QOI0°) + Y Hig)
i=1

where Q is called the expected complete-data log likelihood.
Thus to increase £(g, 0) wrt 6 we need only increase Q(6|0°¢)

Best to choose [M step]
6 = argmaer(GIGOZd)
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Gaussian Mixutre Models
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Gaussian Mixutre Models

001d enew
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Gaussian Mixutre Models

EM algorithm: Summary

E-step Calculate Q(0|0°") using the responsibilities p(z;[x;, 0°)
M-step Maximize Q(0]6°%) wrt 0

EM algorithm for mixtures of Gaussians

new Z47:1 p(jlxi/ GOId)xi

/ Yy pjlxi, 6°1)
n e pold L new\2
(D) Lia P(]lxuel )(xi : )
! Yy p(jlxi, 6°14)

1 n ‘
7I]I@ew — E ZP(]|xir Qold)‘
i=1

[Do mixture of Gaussians demo here]
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Gaussian Mixutre Models

k-means clustering

initialize centres u,, ...,y
while (not terminated)
fori=1,...,n
calculate |x; — p ].|2 for all centres
assign datapoint i to the closest centre
end for
recompute each u; as the mean of the
datapoints assigned to it
end while

k-means algorithm is equivalent to the EM algorithm for
spherical covariances 0]21 in the limit o]? — 0 for all j
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