PMR: Gaussians, Factor Analysis, Mixutres Probabilistic Modelling and Reasoning

Amos Storkey

School of Informatics, University of Edinburgh

Outline

- 1 Gaussian
- 2 Factor Analysis
- 3 Gaussian Mixutre Models

Multivariate Gaussian

- $P(\mathbf{x} \in \mathcal{R}) = \int_{\mathcal{R}} p(\mathbf{x}) d\mathbf{x}$
- Multivariate Gaussian

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right\}$$

 \blacksquare Σ is the covariance matrix

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

$$\Sigma_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)]$$

- Σ is symmetric
- Shorthand $\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- For p(x) to be a density, Σ must be positive definite
- \blacksquare Σ has d(d+1)/2 parameters, the mean has a further d

Mahalanobis Distance

$$d_{\Sigma}^{2}(\mathbf{x}_{i}, \mathbf{x}_{j}) = (\mathbf{x}_{i} - \mathbf{x}_{j})^{T} \Sigma^{-1} (\mathbf{x}_{i} - \mathbf{x}_{j})$$

- **d** $_{\Sigma}^{2}(\mathbf{x}_{i},\mathbf{x}_{j})$ is called the Mahalanobis distance between \mathbf{x}_{i} and \mathbf{x}_{j}
- If Σ is diagonal, the contours of d_{Σ}^2 are axis-aligned ellipsoids
- \blacksquare If Σ is not diagonal, the contours of d_{Σ}^2 are *rotated* ellipsoids

$$\Sigma = \mathbf{U}\Lambda\mathbf{U}^T$$

where Λ is diagonal and U is a rotation matrix

lacksquare Σ is positive definite \Rightarrow entries in Λ are positive

Parameterization of the covariance matrix

- lacksquare Fully general $\Sigma \Longrightarrow \text{variables are correlated}$
- Spherical or isotropic. $\Sigma = \sigma^2 I$. Variables are independent
- Diagonal $[\Sigma]_{ij} = \delta_{ij}\sigma_i^2$ Variables are independent
- Rank-constrained: $\Sigma = \mathbf{W}\mathbf{W}^T + \mathbf{\Psi}$, with \mathbf{W} being a $d \times q$ matrix with q < d 1 and $\mathbf{\Psi}$ diagonal. This is the factor analysis model. If $\mathbf{\Psi} = \sigma^2 I$, then with have the probabilistic principal components analysis (PPCA) model

Transformations of Gaussian variables

Linear transformations of Gaussian RVs are Gaussian

$$\mathbf{x} \sim N(\boldsymbol{\mu}_{x'}, \boldsymbol{\Sigma})$$

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{x}_0$$

$$\mathbf{y} \sim N(\mathbf{A}\boldsymbol{\mu}_{x} + \mathbf{x}_0, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$$

Sums of Gaussian RVs are Gaussian

$$Y = X_1 + X_2$$

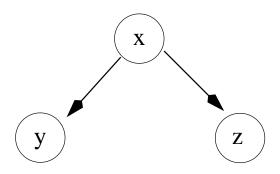
 $E[Y] = E[X_1] + E[X_2]$
 $var[Y] = var[X_1] + var[X_2] + 2covar[X_1, X_2]$
if X_1 and X_2 are independent $var[Y] = var[X_1] + var[X_2]$

Properties of the Gaussian distribution

- Gaussian has relatively simple analytical properties
- Central limit theorem. Sum (or mean) of M independent random variables is distributed normally as $M \to \infty$ (subject to a few general conditions)
- Diagonalization of covariance matrix ⇒ rotated variables are independent
- All marginal and conditional densities of a Gaussian are Gaussian
- The Gaussian is the distribution that maximizes the entropy $H = -\int p(\mathbf{x}) \log p(\mathbf{x}) d\mathbf{x}$ for fixed mean and covariance

Graphical Gaussian Models

Example:



- Let X denote pulse rate
- Let *Y* denote measurement taken by machine 1, and *Z* denote measurement taken by machine 2.

Model

$$\begin{split} X &\sim N(\mu_x, v_x) \\ Y &= \mu_y + w_y(X - \mu_x) + N_y \\ Z &= \mu_z + w_z(X - \mu_x) + N_z \\ \text{noise } N_y &\sim N(0, v_y^N), \ N_z \sim N(0, v_z^N), \ \text{independent} \end{split}$$

■ (X, Y, Z) is jointly Gaussian; can do inference for X given Y = y and Z = z As before

$$P(x, y, z) = P(x)P(y|x)P(z|x)$$

Show that

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_x \\ \mu_y \\ \mu_z \end{pmatrix}$$

$$\boldsymbol{\Sigma} = \begin{pmatrix} v_x & w_y v_x & w_z v_x \\ w_y v_x & w_y^2 v_x + v_y^N & w_y w_z v_x \\ w_z v_x & w_y w_z v_x & w_z^2 v_x + v_z^N \end{pmatrix}$$

Inference in Gaussian models

■ Partition variables into two groups, x_1 and x_2

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

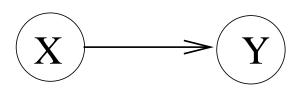
$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

$$\mu_{1|2}^c = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_2 - \mu_2)$$

$$\Sigma_{1|2}^c = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$$

- For proof see e.g. 2.3.1 of Bishop (2006) (not examinable)
- Formation of joint Gaussian is analogous to formation of joint probability table for discrete RVs. Propagation schemes are also possible for Gaussian RVs.

Example Inference Problem



$$Y = 2X + 8 + N_y$$

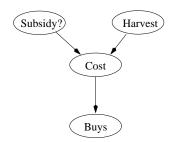
- Assume $X \sim N(0, 1/\alpha)$, so $w_y = 2$, $\mu_y = 8$, and $N_y \sim N(0, 1)$
- Show that

$$\mu_{x|y} = \frac{2}{4+\alpha}(y-8)$$
$$var(x|y) = \frac{1}{4+\alpha}$$

Hybrid (discrete + continuous) networks

- Could discretize continuous variables, but this is ugly, and gives large CPTs
- Better to use parametric families, e.g. Gaussian
- Works easily when continuous nodes are children of discrete nodes; we then obtain a conditional Gaussian model

Example



Model: Given that Subsidy? = true, cost c is a linear function of h, with a multiplication factor w_t and offset b_t , plus noise with variance v_t

$$P(Cost = c|Harvest = h, Subsidy? = true) \sim N(w_th + b_t, v_t)$$

Similarly for Subsidy? = false

$$P(Cost = c|Harvest = h, Subsidy? = false) \sim N(w_f h + b_f, v_f)$$

Factor Analysis

- A latent variable model; can the observations be explained in terms of a small number of unobserved latent variables?
- visible variables : $\mathbf{x} = (x_1, \dots, x_d)$,
- latent variables: $\mathbf{z} = (z_1, \dots, z_m), \mathbf{z} \sim N(0, I_m)$
- noise variables: $\mathbf{e} = (e_1, \dots, e_d)$, $\mathbf{e} \sim N(0, \Psi)$, where $\Psi = \operatorname{diag}(\psi_1, \dots, \psi_d)$.

Assume

$$x = \mu + Wz + e$$

then covariance structure of x is

$$\mathbf{C} = \mathbf{W}\mathbf{W}^T + \mathbf{\Psi}$$

W is called the factor loadings matrix

p(x) is like a multivariate Gaussian pancake

$$p(\mathbf{x}|\mathbf{z}) \sim N(\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$
$$p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$
$$p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \boldsymbol{\Psi})$$

- Rotation of solution: if **W** is a solution, so is **WR** where $\mathbf{R}\mathbf{R}^T = I_m$ as $(\mathbf{W}\mathbf{R})(\mathbf{W}\mathbf{R})^T = \mathbf{W}\mathbf{W}^T$. Causes a problem if we want to interpret factors. Unique solution can be imposed by various conditions, e.g. that $\mathbf{W}^T\mathbf{\Psi}^{-1}\mathbf{W}$ is diagonal.
- Is the FA model a simplification of the covariance structure? A full covariance has d(d+1)/2 independent entries. Ψ and W together have d+dm free parameters (and uniqueness condition above can reduce this). FA model makes sense if number of free parameters is less than d(d+1)/2.

FA example

[from Mardia, Kent & Bibby, table 9.4.1]

Correlation matrix

■ Maximum likelihood FA (impose that $\mathbf{W}^T \mathbf{\Psi}^{-1} \mathbf{W}$ is diagonal). Require $m \leq 2$ otherwise more free parameters than entries in full covariance.

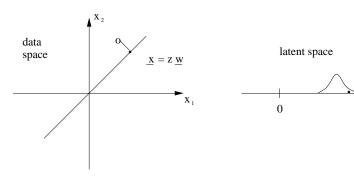
Variable	$m = 1$ w_1	$m = 2$ w_1	(not rotated) \mathbf{w}_2	$m = 2$ w'_1	(rotated) \mathbf{w}_2'
1	0.600	0.628	0.372	0.270	0.678
2	0.667	0.696	0.313	0.360	0.673
3	0.917	0.899	-0.050	0.743	0.510
4	0.772	0.779	-0.201	0.740	0.317
5	0.724	0.728	-0.200	0.698	0.286

- 1-factor and first factor of the 2-factor solutions differ (cf PCA)
- problem of interpretation due to rotation of factors

FA for visualization

$$p(\mathbf{z}|\mathbf{x}) \propto p(\mathbf{z})p(\mathbf{x}|\mathbf{z})$$

Posterior is a Gaussian. If ${\bf z}$ is low dimensional. Can be used for visualization (as with PCA)



Learning W, Ψ

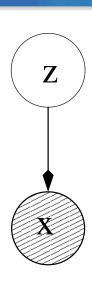
- Maximum likelihood solution available (Lawley/Jreskog).
- EM algorithm for ML solution (Rubin and Thayer, 1982)
 - E-step: for each x_i , infer $p(\mathbf{z}|\mathbf{x}_i)$
 - M-step: do linear regression from z to x to get W
- Choice of *m* difficult (see Bayesian methods later).

Comparing FA and PCA

- Both are linear methods and model second-order structure S
- FA is invariant to changes in scaling on the axes, but not rotation invariant (cf PCA).
- FA models covariance, PCA models variance

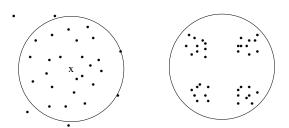
Hidden Variable Models

- Simplest form is 2 layer structure
- z hidden (latent), x visible (manifest)
- Example 1: z is discrete → mixture model
- Example 2: z is continuous → factor analysis



Mixture Models

A single Gaussian might be a poor fit



■ Need mixture models for a *multimodal* density

- Let **z** be a 1-of-*k* indicator variable, with $\sum_i z_i = 1$.
- $p(z_j = 1) = \pi_j$ is the probability of that the *j*th component is active
- \bullet $0 \le \pi_j \le 1$ for all j, and $\sum_{j=1}^k \pi_j = 1$
- The π_i 's are called the mixing proportions

$$p(\mathbf{x}) = \sum_{j=1}^{k} p(z_j = 1) p(\mathbf{x}|z_j = 1) = \sum_{j=1}^{k} \pi_j p(\mathbf{x}|\theta_j)$$

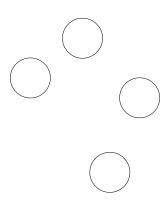
■ The $p(\mathbf{x}|\theta_i)$'s are called the mixture components

Generating data from a mixture distribution

for each datapoint

Choose a component with probability π_i

Generate a sample from the chosen component density end for



Responsibilities

$$\gamma(z_{j}) \equiv p(z_{j} = 1 | \mathbf{x}) = \frac{p(z_{j} = 1) \ p(\mathbf{x} | z_{j} = 1)}{\sum_{\ell} p(z_{\ell} = 1) \ p(\mathbf{x} | z_{\ell} = 1)}$$
$$= \frac{\pi_{j} \ p(\mathbf{x} | z_{j} = 1)}{\sum_{\ell} \pi_{\ell} \ p(\mathbf{x} | z_{\ell} = 1)}$$

 $\mathbf{v}(z_i)$ is the posterior probability (or responsibility) for component *i* to have generated datapoint *x*

Max likelihood for mixture models

$$L(\theta) = \sum_{i=1}^{n} \ln \left\{ \sum_{j=1}^{k} \pi_{j} p(\mathbf{x}_{i} | \theta_{j}) \right\}$$

$$\frac{\partial L}{\partial \theta_j} = \sum_i \frac{\pi_j}{\sum_{\ell} \pi_{\ell} p(\mathbf{x}_i | \theta_{\ell})} \frac{\partial p(\mathbf{x}_i | \theta_j)}{\partial \theta_j}$$

now use

$$\frac{\partial p(\mathbf{x}_i|\theta_j)}{\partial \theta_j} = p(\mathbf{x}_i|\theta_j) \frac{\partial \ln p(\mathbf{x}_i|\theta_j)}{\partial \theta_j}$$

and therefore

$$\frac{\partial L}{\partial \theta_j} = \sum_i \gamma(z_{ij}) \frac{\partial \ln p(\mathbf{x}_i | \theta_j)}{\partial \theta_j}$$

Example: 1-d Gaussian mixture

$$p(x|\theta_j) = \frac{1}{(2\pi\sigma_j^2)^{1/2}} \exp\left\{-\frac{(x-\mu_j)^2}{2\sigma_j^2}\right\}$$
$$\frac{\partial L}{\partial \mu_j} = \sum_i \gamma(z_{ij}) \frac{(x_i - \mu_j)}{\sigma_j^2}$$
$$\frac{\partial L}{\partial \sigma_j^2} = \frac{1}{2} \sum_i \gamma(z_{ij}) \left[\frac{(x_i - \mu_j)^2}{\sigma_j^4} - \frac{1}{\sigma_j^2}\right]$$

At a maximum, set derivatives = 0

$$\hat{\mu}_j = \frac{\sum_{i=1}^n \gamma(z_{ij}) x_i}{\sum_{i=1}^n \gamma(z_{ij})}$$

$$\hat{\sigma}_j^2 = \frac{\sum_{i=1}^n \gamma(z_{ij}) (x_i - \hat{\mu}_j)^2}{\sum_{i=1}^n \gamma(z_{ij})}$$

$$\hat{\pi}_j = \frac{1}{n} \sum_i \gamma(z_{ij}).$$

Generalize to multivariate case

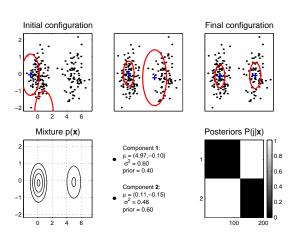
$$\hat{\boldsymbol{\mu}}_{j} = \frac{\sum_{i=1}^{n} \gamma(z_{ij}) \mathbf{x}_{i}}{\sum_{i=1}^{n} \gamma(z_{ij})}$$

$$\hat{\boldsymbol{\Sigma}}_{j} = \frac{\sum_{i=1}^{n} \gamma(z_{ij}) (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}}_{j}) (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}}_{j})^{T}}{\sum_{i=1}^{n} \gamma(z_{ij})}$$

$$\hat{\boldsymbol{\pi}}_{j} = \frac{1}{n} \sum_{i} \gamma(z_{ij}).$$

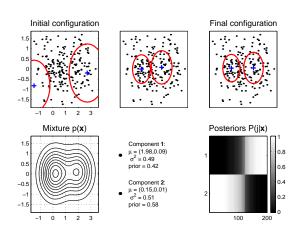
What happens if a component becomes responsible for a single data point?

Example



(Tipping, 1999)

Example 2



(Tipping, 1999)

Kullback-Leibler divergence

Measuring the "distance" between two probability densities P(x) and Q(x).

$$KL(P||Q) = \sum_{i} P(x_i) \log \frac{P(x_i)}{Q(x_i)}$$

- Also called the relative entropy
- Using $\log z \le z 1$, can show that $KL(P||Q) \ge 0$ with equality when P = Q.
- Note that $KL(P||Q) \neq KL(Q||P)$

The EM algorithm

- Q: How do we estimate parameters of a Gaussian mixture distribution?
- A: Use the re-estimation equations

$$\hat{\mu}_{j} \leftarrow \frac{\sum_{i=1}^{n} \gamma(z_{ij}) x_{i}}{\sum_{i=1}^{n} \gamma(z_{ij})}$$

$$\hat{\sigma}_{j}^{2} \leftarrow \frac{\sum_{i=1}^{n} \gamma(z_{ij}) (x_{i} - \hat{\mu}_{j})^{2}}{\sum_{i=1}^{n} \gamma(z_{ij})}$$

$$\hat{\pi}_{j} \leftarrow \frac{1}{n} \sum_{i} \gamma(z_{ij}).$$

■ This is intuitively reasonable, but the EM algorithm shows that these updates will converge to a local maximum of the likelihood

The EM algorithm

EM = Expectation-Maximization

- Applies where there is incomplete (or missing) data
- If this data were known a maximum likelihood solution would be relatively easy
- In a mixture model, the missing knowledge is which component generated a given data point
- Although EM can have slow convergence to the local maximum, it is usually relatively simple and easy to implement. For Gaussian mixtures it is the method of choice.

The nitty-gritty

$$L(\theta) = \sum_{i=1}^{n} \ln p(\mathbf{x}_i | \theta)$$

Consider for just one x first

$$p(\mathbf{x}|\theta) = \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{p(\mathbf{z}|\mathbf{x}, \theta)}$$

SO

$$\log p(\mathbf{x}|\theta) = \log p(\mathbf{x}, \mathbf{z}|\theta) - \log p(\mathbf{z}|\mathbf{x}, \theta).$$

Now take expectations wrt $p(\mathbf{z}|\mathbf{x}, \theta^{old})$

$$\log p(\mathbf{x}|\theta) = \sum_{z} p(\mathbf{z}|\mathbf{x}, \theta^{old}) \log p(\mathbf{x}, \mathbf{z}|\theta) - \sum_{z_i} p(\mathbf{z}|\mathbf{x}, \theta^{old}) \log p(\mathbf{z}|\mathbf{x}, \theta)$$

The nitty-gritty

$$L(\theta) = \sum_{i=1}^{n} \ln p(\mathbf{x}_i | \theta)$$

Consider for just one x_i first

$$\log p(\mathbf{x}_i|\theta) = \log p(\mathbf{x}_i, \mathbf{z}_i|\theta) - \log p(\mathbf{z}_i|\mathbf{x}_i, \theta).$$

Now introduce $q(\mathbf{z}_i)$ and take expectations

$$\begin{split} \log p(\mathbf{x}_i|\theta) &= \sum_{z_i} q(\mathbf{z}_i) \log p(\mathbf{x}_i, \mathbf{z}_i|\theta) - \sum_{z_i} q(\mathbf{z}_i) \log p(\mathbf{z}_i|\mathbf{x}_i, \theta) \\ &= \sum_{z_i} q(\mathbf{z}_i) \log \frac{p(\mathbf{x}_i, \mathbf{z}_i|\theta)}{q(\mathbf{z}_i)} - \sum_{z_i} q(\mathbf{z}_i) \log \frac{p(\mathbf{z}_i|\mathbf{x}_i, \theta)}{q(\mathbf{z}_i)} \\ &\coloneqq \mathcal{L}_i(q_i, \theta) + KL(q_i||p_i) \end{split}$$

From the non-negativity of the KL divergence, note that

$$\mathcal{L}_i(q_i, \theta) \leq \log p(\mathbf{x}_i | \theta)$$

i.e. $\mathcal{L}_i(q_i, \theta)$ is a *lower bound* on the log likelihood

We now set $q(\mathbf{z}_i) = p(\mathbf{z}_i|\mathbf{x}_i, \theta^{old})$ [E step]

$$\mathcal{L}_{i}(q_{i}, \theta) = \sum_{z_{i}} p(\mathbf{z}_{i}|\mathbf{x}_{i}, \theta^{old}) \log p(\mathbf{x}_{i}, \mathbf{z}_{i}|\theta) - \sum_{z_{i}} p(\mathbf{z}_{i}|\mathbf{x}_{i}, \theta^{old}) \log p(\mathbf{z}_{i}|\mathbf{x}_{i}, \theta^{old})$$

$$= def Q_{i}(\theta|\theta^{old}) + H(q_{i})$$

Notice that $H(q_i)$ is independent of θ (as opposed to θ^{old})

Now sum over cases i = 1, ..., n

$$\mathcal{L}(q,\theta) = \sum_{i=1}^{n} \mathcal{L}_{i}(q_{i},\theta) \leq \sum_{i=1}^{n} \log p(\mathbf{x}_{i}|\theta)$$

and

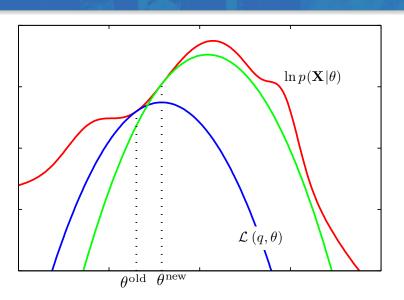
$$\mathcal{L}(q,\theta) = \sum_{i=1}^{n} Q_i(\theta|\theta^{old}) + \sum_{i=1}^{n} H(q_i)$$

$$\stackrel{=}{def} Q(\theta|\theta^{old}) + \sum_{i=1}^{n} H(q_i)$$

where Q is called the expected complete-data log likelihood. Thus to increase $\mathcal{L}(q,\theta)$ wrt θ we need only increase $Q(\theta|\theta^{old})$

Best to choose [M step]

$$\theta = \operatorname{argmax}_{\theta} Q(\theta | \theta^{old})$$



EM algorithm: Summary

E-step Calculate $Q(\theta|\theta^{old})$ using the responsibilities $p(\mathbf{z}_i|\mathbf{x}_i,\theta^{old})$ M-step Maximize $O(\theta|\theta^{old})$ wrt θ

EM algorithm for mixtures of Gaussians

$$\mu_{j}^{new} \leftarrow \frac{\sum_{i=1}^{n} p(j|x_{i}, \theta^{old}) x_{i}}{\sum_{i=1}^{n} p(j|x_{i}, \theta^{old})}$$
$$(\sigma_{j}^{2})^{new} \leftarrow \frac{\sum_{i=1}^{n} p(j|x_{i}, \theta^{old}) (x_{i} - \mu_{j}^{new})^{2}}{\sum_{i=1}^{n} p(j|x_{i}, \theta^{old})}$$
$$\pi_{j}^{new} \leftarrow \frac{1}{n} \sum_{i=1}^{n} p(j|x_{i}, \theta^{old}).$$

[Do mixture of Gaussians demo here]

k-means clustering

```
initialize centres \mu_1,\dots,\mu_k while (not terminated) for i=1,\dots,n calculate |\mathbf{x}_i-\mu_j|^2 for all centres assign datapoint i to the closest centre end for recompute each \mu_j as the mean of the datapoints assigned to it end while
```

k-means algorithm is equivalent to the EM algorithm for spherical covariances $\sigma_j^2 I$ in the limit $\sigma_j^2 \to 0$ for all j