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Welcome
to the Probabilistic Modelling and Reasoning Course

What is this about?
Probabilistic Models for Unsupervised Machine Learning

One course among many:
Introductory Applied Machine Learning
Machine Learning and Pattern Recognition
Information Theory
Reinforcement Learning
Data Mining and Exploration
Neural Information Processing

Just a few courses that are relevant to machine learners on the
MSc (Master of Science) in Informatics and MSc in Artificial
Intelligence at the School of Informatics, University of
Edinburgh.
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Why?

Exciting area of endeavour
Coherent.
Interesting (and some unsolved...) problems.
Now ubiquitous...
Relevant to data analytics, business analytics, financial modelling, medical systems, signal

processing, condition monitoring, brain science, the scientific method, image analysis and computer vision,

language modelling, speech modelling, handwriting recognition, risk management, medical imaging, web

analytics, recommender engines, computer games engines, geoinformational systems, intelligent

management, operational research, etc. etc. etc.

In great demand.
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What is the Point of Studying this Course?

What should you be able to do after this course?
Understand the foundations of Bayesian statistics.
Understand why probabilistic models are the appropriate
models for reasoning with uncertainty.
Know how to build structured probabilistic models.
Know how to learn and do inference in probabilistic
models.
Know how to apply probabilistic modelling methods in
many domains.
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How to succeed

We will use David Barber’s book as our ‘Hitchhikers guide
to Probabilistic Modelling’.

Don’t Panic

Hard course. Decide now whether to do it. Then don’t panic.

Work together...

Practice... Use tutorials. Hand in tutorial questions for marking.

Ask me questions. Yes. Even in the lectures. Use the nota bene.

Keep on top. Don’t let it slip.

Do this and I promise you will learn more on this course
than any other course you have done or are doing!
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How to succeed

Working together is critical. Working on your own is critical
for effective working together.

Tutorials are vital. They are the only way to survive the
course!
Form pairs or small groups within your tutorial.
Arrange a meeting a day or two prior to the tutorial to go
through the tutorial questions together.
Try the questions yourself first. Then get together to
discuss. Work out where you are uncertain. Work out what
you don’t follow. Prepare questions for the tutorial.
Use the online nota bene site: Ask questions. Answer
others questions. Minimize the time being stuck and
maximize understanding.
Don’t try to rote learn this course. Focus on understanding.
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How to succeed

Be bold
You are not supposed to understand everything
immediately. Its hard! Its supposed to be.
Ask, Ask, Ask. Ask yourself. Ask other people. Ask me.
Ask in lecturers.
Don’t rely on lectures. You need more than lectures.
Make lectures better! Prepare beforehand. Ask during.
Again use nota bene when you get stuck. Ask a Q. Its okay
to just say “I don’t get it. Can you put it a different way.”
Work through example questions. Lots of them. If you can’t
do a question you are missing something. Fix it.
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Stop point

Quick break.
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Probabilistic Machine Learning
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Thinking about Data

Probabilistic Modelling does not give us something for
nothing.
Prior beliefs and model + data→ posterior beliefs.
Can do nothing without some a priori model - no
connection between data and question.
A priori model sometimes called the inductive bias.
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Illusions

Logvinenko illusion
Inverted mask illusion
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Logvinenko Illusion
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Inverted Mask Illusion
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Example: Single Image Super-Resolution

Example
Given lots of example images...
Learn how to fill in a high resolution image given a single
low resolution one.
State of the art is hard to beat, and appears to be in
widespread use.
However state of art technology appears to be restricted to
a small region in Los Angeles area.
Technology used unknown but seems particularly pertinent
at discovering reflections of people in windows, and is
usually accompanied by series of short beeps in quick
procession.
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Example: Single Image Super-Resolution

Ancknowledgements: Duncan Robson
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Example: Single Image Super-Resolution

Example
Rest of us stuck with more standard approaches.
One approach:

Build model for image patches. Build model for map from
high to low dimensional space.
Refine model to fit example data.
Invert model to give high dimensional region for low
dimensional data.
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Example: Single Image Super-Resolution
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Reading

Please read David Barber’s book Chapter 1: Probability
Refresher.
Try some of the exercises at the end.
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Probability Introduction

Event Space, Sigma Field, Probability measure.
Prior beliefs and model + data→ posterior beliefs.
Can do nothing without some a priori model - no
connection between data and question.
A priori model sometimes called the inductive bias.
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Event Space

The set of all possible future states of affairs is called the
event space or sample space and is denoted by Ω.
A σ-field F is a collection of subsets of the event space
which includes the empty set ∅, and which is closed under
countable unions and set complements.
Intuitively... The event space is all the possibilities as to
what could happen (but only one will). σ-fields are all the
bunches of possibilities that we might be collectively
interested in.
σ-fields are what we define probabilities on.
A probability measure maps each element of a σ-field to a
number between 0 and 1 (ensuring consistency).
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Random Variables

Random variables assign values to events in a way that is
consistent with the underlying σ-field. ({x ≤ x} ∈ F) – the
bunch of possibilities we might be interested in.
We will almost exclusively work with random variables. We
implicitly assume a standard underlying event space and
σ-field for each variable we use.
P(x ≤ x) is then the probability that random variable x takes
a value less than or equal to x.
Don’t worry. Be happy.
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Rules of Probability

Axioms for events: 0 ≤ P(A) for all events A ∈ Ω. P(Ω) = 1.
For countable disjoint A1,A2, . . . we have
P(A1 ∪ A2 ∪ A3 . . .) =

∑
i=1 P(Ai).

Consequences
Normalization:

∑
y P(y = y) = 1. (

∑→
∫

for densities).
Joint distributions: work in the product space:
P(x < x, y < y).
Marginalisation:

∑
x P(x, y) = P(y)

Conditioning: P(x|y) = P(x, y)/P(y).
Chain rule: Repeated conditioning.
Factorizing: P(x, y|z) = P(x|z)P(y|z) iff x and x are
independent.
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Distribution Functions
of Random Variables

The Cumulative Distribution Function F(x) is F(x) = P(x ≤ x)
The Probability Mass Function for a discrete variable is
P(x) = P(x = x)
The Probability Density Function for a continuous variable
is the function P(x) such that

P(x ≤ x) =

∫ x

−∞
P(x = u)du

Think in terms of probability mass per unit length.
We will use the term Probability Distribution to informally
refer to either of the last two: it will be obvious which from
the context.
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Distribution Functions
of Random Variables

We write P(x = x) for the probability distribution (density or
mass) that random variable x takes value x.

Sloppier notations for brevity
P(x) Sometimes we conflate the notation for the

random variable and the value it takes.
P(x) Sometimes we implicitly assume the underlying

random variable.
P(x = x) If there is any doubt we will specify the full form.
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Notation

See notation sheet. Notation follows Barber mostly.
However I will use capital P for probability, and overload it.
Simply put: work out the random variable that P has as an
argument, and P makes sense.
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Interpretation

Probability Theory is a mathematical abstraction. To use it
(i.e. apply it) you need an interpretation of how “real world”
concepts relate to the mathematics.
Probability as degree of belief. P = 1 is certainty. P = 0 is
impossibility.
See Cox’s axioms
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Cox’s Axioms

Assume measure of plausibility f , and map of negation c(.)
If

1 Plausibility of proposition implies plausibility of negation:
c(c( f )) = f

2 Plausibility of A and B: We can write
f (A and B) = g(A,B|A). Then g is associative.

3 Order independence: the plausibility given information is
independent of the order that information arrives in.

Cox’s theorem: plausibility satisfying the above is
isomorphic to probability.
See also Dutch Book arguments of Ramsey and de Finetti.
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Stop point

Quick break.
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Distributions

Briefly introduce some useful distributions.
Note: Probability mass functions or probability density
functions.
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Bernoulli Distribution

x is a random variable that either
takes the value 0 or the value 1.
Let P(x = 1|p) = p and so
P(x = 0|p) = 1 − p.
Then x has a Bernoulli distribution.

0 1
0

0.2

0.4

0.6

0.8

1

Amos Storkey — PMR Introduction School of Informatics, University of Edinburgh 33/50

Welcome Probability Refresher Some Distributions

Multivariate Distribution

x is a random variable that takes one
of the values 1, 2, . . . ,M.
Let P(x = i|p) = pi, with

∑m
i=1 pi = 1.

Then x has a multivariate
distribution.
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Binomial Distribution

The binomial distribution is obtained
from the total number of 1’s in n
independent Bernoulli trials.
x is a random variable that takes one
of the values 0, 1, 2, . . . ,n.

Let P(x = r|p) =

(
n
r

)
pr(1 − p)(n−r).

Then x is binomially distributed.
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Multinomial Distribution

The multinomial distribution is obtained from the total count
for each outcome in n independent multivariate trials with
m possible outcomes.
x is a random vector of length m taking values x with
xi ∈ Z+ (non-negative integers) and

∑m
i=1 xi = n.

Let
P(x = x|p) =

n!
x1! . . . xm!

px1
1 . . . p

xm
m

Then x is multinomially distributed.
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Poisson Distribution

The Poisson distribution is obtained
from binomial distribution in the limit
n→∞ with p/n = λ.
x is a random variable taking
non-negative integer values
0, 1, 2, . . ..
Let

P(x = x|λ) =
λx exp(−λ)

x!

Then x is Poisson distributed.
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Uniform Distribution

x is a random variable taking values
x ∈ [a, b].
Let P(x = x) = 1/[b − a]
Then x is uniformly distributed.

Note
Cannot have a uniform distribution on an
unbounded region.
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Gaussian Distribution

x is a random variable taking values
x ∈ R (real values).
Let P(x = x|µ, σ2) =

1√
2πσ2

exp
(
− (x − µ)2

2σ2

)

Then x is Gaussian distributed with
mean µ and variance σ2.
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Gamma Distribution

The Gamma distribution has a rate
parameter β > 0 (or a scale
parameter 1/β) and a shape
parameter α > 0.
x is a random variable taking values
x ∈ R+ (non-negative real values).
Let

P(x = x|λ) =
1

Γ(α)
xα−1βα exp(−βx)

Then x is Gamma distributed.
Note the Gamma function.
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Exponential Distribution

The exponential distribution is a
Gamma distribution with α = 1.
The exponential distribution is often
used for arrival times.
x is a random variable taking values
x ∈ R+ .
Let P(x = x|λ) = λ exp(−λx)
Then x is exponentially distributed.
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Laplace Distribution

The Laplace distribution is obtained
from the difference between two
independent identically exponentially
distributed variables.
x is a random variable taking values
x ∈ R.
Let P(x = x|λ) = (λ/2) exp(−λ|x|)
Then x is Laplace distributed.
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Beta Distribution

x is a random variable taking values
x ∈ [0, 1].
Let

P(x = x|k) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1 − x)b−1

Then x is β(a, b) distributed.
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Student t Distribution

The Student t distribution is a heavy
tailed distribution.
x is a random variable taking values
x ∈ R.
Let P(x = x|ν) =

Γ( ν+1
2 )√

νπΓ( ν2 )

(
1 +

x2

ν

)−( ν+1
2 )

Then x is t distributed with ν degrees
of freedom.
The Cauchy distribution is a t
distribution with ν = 1.
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The Kronecker Delta

Think of a discrete distribution with all its probability mass
on one value. So P(x = i) = 1 iff (if and only if) i = j.
We can write this using the Kronecker Delta:

P(x = i) = δi j

δi j = 1 iff i = j and is zero otherwise.
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The Dirac Delta

Think of a real valued distribution with all its probability
density on one value.
There is an infinite density peak at one point (lets call this
point a).
We can write this using the Dirac delta:

P(x = x) = δ(x − a)

which has the properties δ(x − a) = 0 if x , a, δ(x − a) = ∞ if
x = a,

∫ ∞

−∞
dx δ(x − a) = 1 and

∫ ∞

−∞
dx f (x)δ(x − a) = f (a).

You could think of it as a Gaussian distribution in the limit
of zero variance.
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Other Distributions

Chi-squared distribution with k degrees of freedom is a
Gamma distribution with β = 1/2 and k = 2/α.
Dirichlet distribution: will be used on this course.
Weibull distribution (a generalisation of the exponential)
Geometric distribution
Negative binomial distribution.
Wishart distribution (a distribution over matrices).
distributions.
Use Wikipedia and Mathworld. Good summaries for
distributions.
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Things you must never (ever) forget

Probabilities must be between 0 and 1 (though probability
densities can be greater than 1).
Distributions must sum (or integrate) to 1.
Probabilities must be between 0 and 1 (though probability
densities can be greater than 1).
Distributions must sum (or integrate) to 1.
Probabilities must be between 0 and 1 (though probability
densities can be greater than 1).
Distributions must sum (or integrate) to 1.
Note probability densities can be greater than 1.
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Summary

I plan to challenge you.
This is going to be hard. Keep up.
Theoretical grounding is key.
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To Do

Attending lectures is no substitute for working through the
material! Lectures will motivate the methods and approaches.
Only by study of the notes and bookwork will the details be
clear. If you do not understand the notes then discuss them
with one another. Ask your tutors.

Reading
These lecture slides. Chapter 1 of Barber.

Preparatory Reading
Barber Chapter 2.

Extra Reading
Cox’s Axioms. Subjective Probability.
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