

Graphical Models

- Belief networks are examples of probabilistic graphical models.
- Graphical models encode structural aspects of probability distributions.
- There are other forms of graphical models
 - Factor graphs
 - Markov networks (undirected graphical models)
 - Others (structural equation models, causal models, etc. – we will not spend much time on these on this course).

Graphical Models Decision Theory Learning
Probabilistic

Mixture and Factor Models

Markov Mo

Approximate Inference

- Informally Introduce Belief Networks
- Formalise
 - Graph Theory
 - Probabilistic Graphical Models
 - Belief Networks (Bayesian Networks)
 - Markov Networks
 - Factor Graphs

Factor Graphs

Factor Graphs

$$P(\mathbf{x}) = P(x_1) \prod_{i=2}^{M} P(x_i | x_{\leq i})$$

$$P(\mathbf{x}) = \frac{1}{Z} \prod_{i=1}^{N_f} \psi_i(\mathbf{x})$$

Z is a normalisation const., ψ terms are 'factors'. Nf is number of factors.

- Yes. But. Is this a useful way to split up P(x)?
- Those who did MLPR: remember exponential family distributions?

$$P(\mathbf{x}) = \frac{1}{Z} \exp \left(f(\mathbf{x}) + \sum_{i=1}^{N_f} w_i \phi_i(\mathbf{x}) \right)$$

- Note that this can be written in factor representation.
- Sometimes not all the variables are expressed in every factor. Often each factor only contains a few variables.
- **E.g.** $\psi_i(x_1, x_2, x_3, x_4, x_5) = \psi_i(x_1, x_2)$

Building a Factor Graph

- Let C_i denote the set of indices of the variables that occur in the *i*th factor.
- Let χ_i collect the variables indexed by C_i . E.g. $\chi_1 = (x_1, x_3, x_7, x_8)$. Then we can write

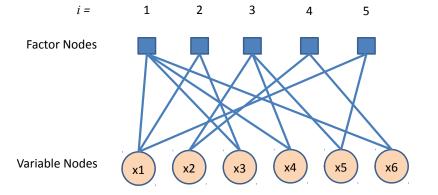
$$P(\mathbf{x}) = \frac{1}{Z} \prod_{i=1}^{N_f} \psi_i(\chi_i)$$

We can build a graphical representation to capture this. It is called a factor graph.

Building a Factor Graph

$$P(\mathbf{x}) = \frac{1}{Z} \prod_{i=1}^{N_f} \psi_i(\chi_i)$$

$$\chi_1 = (x_1, x_3, x_4, x_6)
\chi_2 = (x_1, x_3)
\chi_3 = (x_2, x_4, x_5)
\chi_4 = (x_2, x_6)
\chi_5 = (x_5, x_1)$$



Factor Graphs

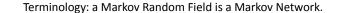
- Factor graphs are the natural representation for factorial decompositions of probability distributions.
- These sorts of representations are used in many settings we will encounter later.
- Often making factorising assumptions make parameterising a model feasible.

Markov Network

- A Markov network is an undirected graphical model.
- It is built from a factor graph by linking together all the nodes in each factor.
- A link in a factor graph encodes a direct dependence:
 - An edge i -- j is missing implies

 $I(x_i, x_j | \mathbf{x}_{\setminus \{i, j\}})$

 The second term denotes all the x variables apart from the ith and jth term.



Examples

Can you think of some situations when factor graphs or Markov networks are a natural representation?

Stop Point

Questions?

Separation

- Conditional independence in Markov networks is much simpler.
- Separation Method:
 - Consider I(A,B|C).
 - Remove all the nodes C from the graph, and all links connecting node C.
 - If there is now no path from A to B, the independence relationship holds.
- Can you verify this using the probability distribution?
- The same approach applies to factor graphs.

Conversion

- Converting between network types.
- We have covered Factor Graph → Markov Network by construction.
- But we can convert between other graph types.
- Markov Network → Factor Graph
 - Find all maximal cliques in network. Make one factor per maximal clique.
- Note this is not necessarily minimal.
- Can you think of a Factor Graph s.t.

$$FG \rightarrow MN \rightarrow FG$$

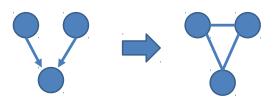
returns something different from what you started with?

Converting Belief Networks

- Question:
- How would you convert a belief network to a factor graph?

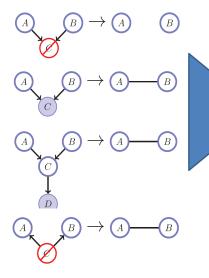
Converting Belief Networks

- Markov Networks to Belief Networks is hard. We will not cover that here. (In fact to do this solves inference? Can you see why?)
- Belief Networks → Markov Networks?
 - Marry Parents...
 - Why? \rightarrow Next slide.



Conditional Independence Revisited

From Barber (red circle implies marginalising – summing out, blue filled is conditioning). We only consider the link between A and B.



Sometimes A and B are directly dependent under conditioning.

Conditioning cannot create dependencies in a Markov network. So we have to put them in explicitly where this might happen.
Hence marrying parents.

Stop Point

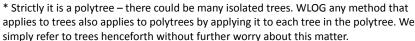
Questions?

Tree Structured Networks

An undirected network is a tree if the network has no undirected cycles. (*)

The simplest type of tree is a chain

Trees are special. Trees are easy to do inference with...



Where are we going?

- We have talked about
 - Probability distributions
 - Decomposing distributions into structure and probability values
 - Representing structure graphically is natural
 - Specifying structure from prior causal knowledge
 - The efficiency of specifying structure
 - Converting between graphical structures
 - Understanding independence from graphical structures
- We have said next to nothing about
 - What the graphical structure enables us to do
 - What sorts of problems we need to address with probabilistic models
 - Inference
 - Learning
 - How we can get the numbers in our models.

What is Inference?

- If we know a probabilistic model for something, how do we use it?
- Usually we ask questions we care about.
- They take the form
 - If THIS and THAT happen then what might happen to THOSE?
 - This is a conditional probability

$$P(\text{THOSE}|\text{THIS}, \text{THAT}) = \sum_{\text{OTHER}} P(\text{THOSE}, \text{OTHER}|\text{THIS}, \text{THAT})$$

- Given a probabilistic model (which represents a joint distribution), what we want out are marginalised conditional distributions.
- Finding these is called inference.

Remember: Marginalising is summing out over unwanted variables

Why is Inference Hard?

- In a general distribution, when we condition or marginalise a variable we have to worry about the effects on every combination of all the other variables.
- We can do inference by *enumeration* of all possibilities
- This becomes infeasible in large systems.
- Sometimes graphical models help.

- Aside: computing probabilities over many variables is also problematic, as finding the normalisation constant is costly.
 - We leave this issue for later. Here we assume we want distributions over a small number of variables (we can condition on as many variables as we want).

Inference in Markov Networks

- Consider marginalisation and conditioning operations on a tree.
- Conditioning
 - Look at all neighbours. Replace factors at all neighbours to be conditional factors. This is called *absorbing*.
- Marginalising
 - Find all the factors containing the node to be marginalised. Replace all these factors with one big factor produced by marginalising over those factors only.
 - All other factors stay the same.
- This is the basis of the elimination algorithm.

Written Example

Sum-Products

Sum distribution in sum-products

$$P(x_1, x_2, x_4, x_5) = \sum_{x_3} \frac{1}{Z} \psi_1(x_1, x_4) \psi_2(x_1, x_5) \psi_3(x_2, x_3) \psi_4(x_3, x_5)$$

$$= \frac{1}{Z} \psi_1(x_1, x_4) \psi_2(x_1, x_5) \sum_{x_3} \psi_3(x_2, x_3) \psi_4(x_3, x_5)$$

$$= \frac{1}{Z} \psi_1(x_1, x_4) \psi_2(x_1, x_5) \psi_*(x_2, x_5)$$

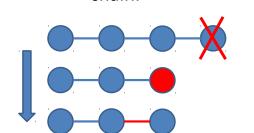
where

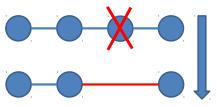
$$\psi_*(x_2, x_5) = \sum_{x_3} \psi_3(x_2, x_3) \psi_4(x_3, x_5)$$

Order matters. Do cheap eliminations first.

Elimination Algorithm in Chains

- Consider Chains
 - If we eliminate from the ends of the chain, then it is cheap: results in a factor over one variable.
 - If we eliminate from the middle of the chain then it is cheap: results in a new link in the chain.





Elimination in Trees

- Suppose we want the marginal distribution at one node. (Conditioned nodes have been absorbed.)
- Any node of an undirected tree can be viewed as the root. Make this the node you care about.
- Use elimination from leaves of the tree.
 - Just like the chain
 - Each step produces a subtree.
 - Eventually just left with one node: the root.
 - Have marginal distribution for this node.

The Elimination Algorithm

We give the elimination algorithm for factor graphs:

- Specify three sets: Evidential nodes (the nodes to be conditioned on), query nodes (the nodes we want a distribution over), latent nodes (the nodes we want to marginalise over).
- 2. Absorb the conditioned nodes into the existing factors.
- 3. Choose an elimination ordering for the latent nodes.
- 4. For each latent node in order above
 - Find all connected factors, and compute the product.
 - Sum out over the latent node from that product to get a new factor.
- Replace all the previous factor nodes with a new node with that new factor.
- 5. We are left with factors over the nodes we care about. Enumerate these and normalise to get the probabilities.

Question

- But what if we want to compute more than one distribution at once? E.g. we want the marginal at every node in the network.
- But what if the network is not a tree?
- More next lecture!

Summary

- Belief Networks, Markov Networks, Factor Graphs.
- Read and work through Chapters 4 and 5 of Barber.
- There is much more detail there which is important for understanding.

