


Our Journey

 Informally Introduce Belief Networks
 Formalise

– Graph Theory
– Probabilistic Graphical Models

● Belief Networks (Bayesian Networks)
● Markov Networks
● Factor Graphs
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Graphical Models

 Belief networks are examples of probabilistic 
graphical models.

 Graphical models encode structural aspects of 
probability distributions.

 There are other forms of graphical models
– Factor graphs
– Markov networks (undirected graphical models)
– Others (structural equation models, causal 

models, etc. – we will not spend much time on 
these on this course).



Factor Graphs
 Factor Graphs

– We noted we could write

– However we can also write

Z is a normalisation const., ψ  terms are ‘factors’. Nf is number of factors.
 Yes. But. Is this a useful way to split up P(x)?
 Those who did MLPR: remember exponential family distributions?

 Note that this can be written in factor representation.
 Sometimes not all the variables are expressed in every factor. Often each factor 

only contains a few variables.
 E.g.



Building a Factor Graph

 Let  denote the set of indices of the variables that 
occur in the ith factor.

 Let  collect the variables indexed by  E.g. . Then we 
can write

 We can build a graphical representation to capture 
this. It is called a factor graph.

  



Building a Factor Graph

Factor Nodes

Variable Nodes

i = 1 2 3 4 5

x2 x3 x4 x5 x6x1



Factor Graphs

 Factor graphs are the natural representation 
for factorial decompositions of probability 
distributions.

 These sorts of representations are used in 
many settings we will encounter later.

 Often making factorising assumptions make 
parameterising a model feasible.



Markov Network

 A Markov network is an undirected graphical 
model. 

 It is built from a factor graph by linking 
together all the nodes in each factor.

 A link in a factor graph encodes a direct 
dependence:

– An edge i -- j is missing implies
– The second term denotes all the x variables apart 

from the ith and jth term.

Terminology: a Markov Random Field is a Markov Network.



Examples

 Can you think of some situations when 
factor graphs or Markov networks are a 
natural representation? 



Stop Point

 Questions?



Separation

 Conditional independence in Markov networks is 
much simpler.

 Separation Method:
– Consider I(A,B|C). 
– Remove all the nodes C from the graph, and all links 

connecting node C.
– If there is now no path from A to B, the independence 

relationship holds.
 Can you verify this using the probability 

distribution?
 The same approach applies to factor graphs.



Conversion

 Converting between network types.
 We have covered Factor Graph Markov Network by 

construction.
 But we can convert between other graph types.
 Markov Network Factor Graph

– Find all maximal cliques in network. Make one factor per 
maximal clique.

 Note this is not necessarily minimal.
 Can you think of a Factor Graph s.t.

FG  MN  FG
returns something different from what you started with? 



Converting Belief Networks

 Question:
 How would you convert a belief network to 

a factor graph? 



Converting Belief Networks

 Markov Networks to Belief Networks is 
hard. We will not cover that here. (In fact to 
do this solves inference? Can you see why?)

 Belief Networks  Markov Networks?
– Marry Parents…
– Why?  Next slide.



Conditional Independence Revisited

 From Barber (red circle implies marginalising – summing out, blue 
filled is conditioning). We only consider the link between A and B.

Sometimes A and B are directly 
dependent under conditioning.

Conditioning cannot create 
dependencies in a Markov 
network. So we have to put 
them in explicitly where this 
might happen.
Hence marrying parents.



Stop Point

 Questions?



Tree Structured Networks

 An undirected network is a tree if the 
network has no undirected cycles. (*)

 The simplest type of tree is a chain

  Trees are special. Trees are easy to do 
inference with…
* Strictly it is a polytree – there could be many isolated trees. WLOG any method that 
applies to trees also applies to polytrees by applying it to each tree in the polytree. We 
simply refer to trees henceforth without further worry about this matter.



Where are we going?
 We have talked about

– Probability distributions
– Decomposing distributions into structure and probability values
– Representing structure graphically is natural
– Specifying structure from prior causal knowledge
– The efficiency of specifying structure
– Converting between graphical structures
– Understanding independence from graphical structures

 We have said next to nothing about
– What the graphical structure enables us to do
– What sorts of problems we need to address with probabilistic models

● Inference
● Learning

– How we can get the numbers in our models.



What is Inference?
 If we know a probabilistic model for something, how do we 

use it?
 Usually we ask questions we care about.
 They take the form

– If THIS and THAT happen then what might happen to THOSE?
–  This is a conditional probability

 

 Given a probabilistic model (which represents a joint 
distribution), what we want out are marginalised 
conditional distributions.

 Finding these is called inference.
Remember: Marginalising is summing out over unwanted variables



Why is Inference Hard? 
 In a general distribution, when we condition or marginalise a 

variable we have to worry about the effects on every 
combination of all the other variables.

 We can do inference by enumeration of all possibilities
 This becomes infeasible in large systems.
 Sometimes graphical models help.

 Aside: computing probabilities over many variables is also 
problematic, as finding the normalisation constant is costly.

– We leave this issue for later. Here we assume we want distributions 
over a small number of variables (we can condition on as many 
variables as we want).



Inference in Markov Networks

 Consider marginalisation and conditioning 
operations on a tree.

 Conditioning
– Look at all neighbours. Replace factors at all neighbours 

to be conditional factors. This is called absorbing.
 Marginalising

– Find all the factors containing the node to be 
marginalised. Replace all these factors with one big 
factor produced by marginalising over those factors only.

– All other factors stay the same.
 This is the basis of the elimination algorithm.



Written Example



Sum-Products

 Sum distribution in sum-products

 Order matters. Do cheap eliminations first.



Elimination Algorithm in Chains

 Consider Chains
– If we eliminate from the ends of the chain, 

then it is cheap: results in a factor over one 
variable.

– If we eliminate from the middle of the chain 
then it is cheap: results in a new link in the 
chain.



Elimination in Trees

 Suppose we want the marginal distribution at 
one node. (Conditioned nodes have been 
absorbed.)

 Any node of an undirected tree can be viewed 
as the root. Make this the node you care 
about.

 Use elimination from leaves of the tree.
– Just like the chain
– Each step produces a subtree.
– Eventually just left with one node: the root.
– Have marginal distribution for this node.



The Elimination Algorithm
We give the elimination algorithm for factor graphs:
1. Specify three sets: Evidential nodes (the nodes to be conditioned on), 

query nodes (the nodes we want a distribution over), latent nodes (the 
nodes we want to marginalise over).

2. Absorb the conditioned nodes into the existing factors.
3. Choose an elimination ordering for the latent nodes.
4. For each latent node in order above

– Find all connected factors, and compute the product.
– Sum out over the latent node from that product to get a new factor.
– Replace all the previous factor nodes with a new node with that new factor.

5. We are left with factors over the nodes we care about. Enumerate these 
and normalise to get the probabilities. 



Question

 But what if we want to compute more than 
one distribution at once? E.g. we want the 
marginal at every node in the network.

 But what if the network is not a tree?

 More next lecture!



Summary

 Belief Networks, Markov Networks, Factor 
Graphs.

 Read and work through Chapters 4 and 5 of 
Barber.

 There is much more detail there which is 
important for understanding.
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