Our Journey

- Exponential Family
- Gaussian Distribution
 - Factor Models
- Gaussian Mixture Models
- Boltzmann Machine
- Deep Learning Methods

Graphical Models
Decision Theory
Learning Probabilistic Models
Mixture and Factor Models
Markov Models
Approximate Inference
Our Journey

- Graphical Models
- Decision Theory
- Learning Probabilistic Models
- Mixture and Factor Models
- Markov Models
- Approximate Inference

Gibbs Sampling Quick Summary
Quick Summary on Sampling

- If you did this in MLPR this is revision.
Suppose we have an expectation we wish to compute: i.e. an integral

\[A = \langle f(\theta) \rangle_P = \int d\theta P(\theta)f(\theta) \]

This occurs often: compute mean of distribution. Compute error for distribution. Compute best prediction for a distribution etc.

Cannot compute it. But can sample (draw, get artificial data) from \(P(\theta) \).

Use

\[A \approx \tilde{A} = \frac{1}{N_S} \sum_{i=1}^{N_S} f(\theta_i) \]

where \(\theta_i \) are samples from \(P(\theta) \).

This is a Monte-Carlo approximation.
But how do we get samples? Use properties of Markov Chains:

- **Ergodicity**: a Markov chain is ergodic if you would expect to get from each state to any other state in finite time, and if it is acyclic: its return time to any state is not always divisible by a number > 1.

- **Reversibility**: a Markov chain is reversible iff it satisfies detailed balance: for some distribution P_B:
 \[P_B(\theta)P_T(\phi|\theta) = P_B(\phi)P_T(\theta|\phi) \]

- **Equilibrium Distribution**: an ergodic Markov chain has a unique equilibrium distribution $P_\infty(\theta)$ such that
 \[P_\infty(\theta) = \int d\theta' P_T(\theta|\theta')P_\infty(\theta') \]

- An ergodic reversible Markov chain satisfying detailed balance wrt P_B has P_B as its unique equilibrium distribution.
Did not know how to sample from a distribution $P(\theta)$.

Idea: Use a Markov chain. Design so $P(\theta)$ is equilibrium distribution.

Run Markov chain sampling ‘for long enough’ to get samples from equilibrium distribution.

How to design Markov chain? Ensure satisfies detailed balance wrt. $P(\theta)$,

Sampling from a chain:

Initialise state θ_0. Compute $P_T(\theta_1|\theta_0)$. Sample from this to get θ_1. Repeat ad infinitum (or until you get bored).

Markov Chain Monte-Carlo (MCMC)
Gibbs Sampling

- Markov chain: Adapt θ_i keeping all $\theta_{j \neq i}$ fixed. i.e.
- Choose i uniformly from $i = 1, 2, \ldots, D$. Set $\theta_{t+1} = \theta_t$.
 Then sample $\theta_{t+1,i}$ from the conditional probability $P(\theta_{t+1,i} | \theta_{t+1,\neq i})$ where $\theta_{t+1,\neq i}$ denotes the set $\{\theta_{t+1,j} | j \neq i\}$.
- Repeat.
- Can cycle through i either (this is not reversible, but can be shown to have a unique equilibrium distribution).

Matlab Demos
Sampling

End Of Summary. Questions.
Our Journey

- Exponential Family
- Gaussian Distribution
 - Factor Models
- Gaussian Mixture Models
- Boltzmann Machine
- Deep Learning Methods
The Gaussian

Remember the good old Gaussian

\[P(x) = \frac{1}{Z} \exp(-E(x)) \]

where

\[E(x) = \frac{1}{2}(x - \mu)^T \Lambda(x - \mu) \]
\[= \frac{1}{2}x^T \Lambda x + b^T x + \text{const} \]

- \(x \) is real valued.
- Does it have to be in these equations?
- What happens to \(Z \) if it isn’t?
The Boltzmann Machine

- The Boltzmann Machine has the form
 \[P(x) = \frac{1}{Z} \exp(-E(x)) \]
 where
 \[E(x) = \frac{1}{2} x^T W x + b^T x \]
 \(x_i \in \{0, 1\} \)

- but where \(x \) is a binary vector

- What is \(Z \)?

- So what does a Boltzmann Machine do?

- What sort of information can be captured? Discuss...
The Energy Function

- The Energy function E determines the regions of high and low probabilities.

- In 2D:

- In High D:
Some model features:

Q: Show that if $x_i \in \{-1, 1\}$ that is also a Boltzmann Machine

Q: Show that W might as well be symmetric.

Q: Show that W might as well be positive definite...

...or W might as well have zero diagonal.
Q: Show that if $x_i \in \{-1, 1\}$ that is also a Boltzmann Machine

Q: Show that W might as well be symmetric.
Q: Show that W might as well be positive definite...

...or W might as well have zero diagonal.
Consider the case where x is all visible.

If $b=0$ and $W = \sum_{n} x^n (x^n)^T$

Then what is the Energy function like?
But x could be split into visible units y and hidden units h.

Then what form does $P(x)$ take?
Given data \(D = \{x^1, x^2, \ldots, x^N\} \)

How do we learn the parameters of the Boltzmann Machine?
Learning

- But this doesn’t really work...
- Why?

Various issues:
- Signal to noise problems
- Sampling error induces random walk behaviour
- The gradient gets small in the tails of the sigmoids.
The Restricted Boltzmann Machine

The Restricted Boltzmann Machine has the form

\[P(x) = \frac{1}{Z} \exp(-E(x)) \]

where

\[E(x) = v^T Wh + a^T v + b^T h \]

What is its graphical structure?

What are its conditional independence relationships?
Why is this a benefit?

How do we do learning in Restricted Boltzmann Machines?
What are the hidden units in an RBM?
Here is a cheat.

Having learnt an RBM. We have a mapping from visible to hidden units.

Given the visibles we can obtain a hidden representation.

In fact we could just focus on this representation as a summary for the data.

And we could learn another RBM for that representation

And so on
How does this work pictorially?

The result is a deep belief network.
Issue: Machine learning is dependent on representation.

Need method of learning good representations.

Method needs to be unsupervised.

Representations are hierarchical.

Deep Learning does representation learning.
Deep Networks in Action

- Top performing methods in many scenarios.