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Quick Summary on Sampling

 If you did this in MLPR this is revision.
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 But how do we get samples? Use properties of Markov 
Chains:
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How?
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Gibbs Sampling
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Matlab Demos



Sampling

 End Of Summary. Questions.
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The Gaussian

 Remember the good old Gaussian

 x is real valued.
 Does it have to be in these equations?
 What happens to Z if it isn’t?
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The Boltzmann Machine
 The Boltzmann Machine has the form

 but where x is a binary vector
 What is Z?

 So what does a Boltzmann Machine do?

 What sort of information can be captured? Discuss…
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The Energy Function

 The Energy function E determines the 
regions of high and low probabilities.

 In 2D:

 In High D:
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 Some model features:

 Q: Show that if                        that is also a 
Boltzmann Machine

 Q: Show that W might as well be symmetric.
 Q: Show that W might as well be positive 

definite… 
 …or W might as well have zero diagonal.
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Fully Visible Model

 Consider the case where x is all visible.
 If b=0 and

 Then what is the  Energy function like?
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 But x could be split into visible units y and 
hidden units h.

 Then what form does P(x) take?
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Learning

 Given data
 How do we learn the parameters of the 

Boltzmann Machine? 
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Learning

 But this doesn’t really work…
 Why?

 Various issues:
– Signal to noise problems
– Sampling error induces random walk behaviour
– The gradient gets small in the tails of the 

sigmoids.
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The Restricted Boltzmann Machine

 The Restricted Boltzmann Machine has the form

 What is its graphical structure?

 What are its conditional independence 
relationships?
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Why is this a benefit?

 How do we do learning in Restricted 
Boltzmann Machines?
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Representations

 What are the hidden units in an RBM?
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Stacked RBMs

 Here is a cheat.
 Having learnt an RBM. We have a mapping from 

visible to hidden units.
 Given the visibles we can obtain a hidden 

representation.
 In fact we could just focus on this representation 

as a summary for the data.
 And we could learn another RBM for that 

representation
 And so on
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Graphically

 How does this work pictorially?

 The result is a deep belief network.
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Representation Learning

 Issue: Machine learning is dependent on 
representation.

 Need method of learning good 
representations.

 Method needs to be unsupervised.
 Representations are hierarchical.

 Deep Learning does representation learning.
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Deep Networks in Action

 Top performing methods in many scenarios.
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