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Quick Summary on Sampling

“If you did this in MLPR this is revision.



B Suppose we have an expectation we wish to compute: i.e.
an integral

A= 10))0 = [ dOP(©)1(6)

This occurs often: compute mean of distribution. Compute
error for distribution. Compute best prediction for a
distribution etc.

m Cannot compute it. But can sample (draw, get artificial
data) from P(8).

m Use
. 1 Ns
AmA:—E f(0:
NS."=1 (,)

where 6; are samples from P(6).
m This is a Monte-Carlo approximation.



“ But how do we get samples? Use properties of Markov
Chains:

m Ergodicity: a Markov chain is ergodic if you would expect to
get from each state to any other state in finite time, and if it
is acyclic: its return time to any state is not always divisible
by a number > 1.

m Reversibility: a Markov chain is reversible iff it satisfies
detailed balance: for some distribution Pg:

Pa(6)Pr($16) = Pa()Pr(6]¢)

m Equilibrium Distribution: an ergodic Markov chain has a

unique equilibrium distribution P, (#) such that

P.(6) = [ o' Pr(616)Pw(®)

m An ergodic reversible Markov chain satisfying detailed
balance wrt Pg has Pg as its unique equilibrium
distribution.



How?

m Did not know how to sample from a distribution P(8).

m Idea: Use a Markov chain. Design so P(8) is equilibrium
distribution.

m Run Markov chain sampling ‘for long enough’ to get
samples from equilibrium distribution.

m How to design Markov chain? Ensure satisfies detailed
balance wrt. P(8),

m Sampling from a chain:

m Initialise state 6y. Compute Pr(61|0y). Sample from this to
get 8. Repeat ad infinitum (or until you get bored).

m Markov Chain Monte-Carlo (MCMC)



Gibbs Sampling

m Markov chain: Adapt 6; keeping all ¢;; fixed. i.e.

m Choose j uniformly fromi=1,2,...,D. Set 8;.1 = 6;.
Then sample ;.4 ; from the conditional probability
P(0t+1i|0t+1 i) Where 0¢,4 »; denotes the set {0t 4|j # i}.

m Repeat.

m Can cycle through / either (this is not reversible, but can be
shown to have a unique equilibrium distribution)

Matlab Demos



Sampling

“ End Of Summary. Questions.



Our Journey

. . Learning Mixture and
Graphical Decision o :
Models Theor Probabilistic Factor Approximate Inference
y Models Models

Exponential Family

Gaussian Distribution
— Factor Models

Gaussian Mixture Models

Boltzmann Machine
Deep Learning Methods




“ Remember the good old Gaussian

P(x) = - exp(~E(x))

where

1
5
1

= §XTAX + bl'x + const

E(x) = s(x—p) A(x —p)

“ x is real valued.
“ Does it have to be in these equations?
“ What happensto Zifitisn’t?
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The Boltzmann Machine

“ The Boltzmann Machine has the form

P(x) =  exp(~E(x))
where 1
E(x) = §XTWX +blx
xT; € {07 1}

“ but where x is a binary vector
“ Whatis Z?

“ So what does a Boltzmann Machine do?

“ What sort of information can be captured? Discuss...
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The Energy Function

“ The Energy function E determines the
regions of high and low probabilities.

“In 2D:

“In High D:
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“ Some model features:

© Q: Show that if x; € {—1,1}thatis also a
Boltzmann Machine

“ Q: Show that W might as well be symmetric.

“ Q: Show that W might as well be positive
definite...

= ...or W might as well have zero diagonal.



© Q: Show thatif x; € {—1,1}thatis also a
Boltzmann Machine

“ Q: Show that W might as well be symmetric.



“ Q: Show that W might as well be positive
definite...

= ...or W might as well have zero diagonal.



Fully Visible Model

“ Consider the case where x is all visible.
"ifb=0and W=>)» x"(x")"

“ Then what is the Energy function like?
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“ But x could be split into visible units y and
hidden units h.

“ Then what form does P(x) take?
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" Givendata D= {x'x*...,x"}

“ How do we learn the parameters of the
Boltzmann Machine?
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“ But this doesn’t really work...
“ Why?

“'Various issues:
— Signal to noise problems
— Sampling error induces random walk behaviour
— The gradient gets small in the tails of the
sigmoids.
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The Restricted Boltzmann Machine

“ The Restricted Boltzmann Machine has the form

P(x) = — exp(~E(x))

where
E(x)=v'Wh+a’v+b'h

“ What is its graphical structure?

“ What are its conditional independence
relationships?
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Why is this a benefit?

“ How do we do learning in Restricted
Boltzmann Machines?
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Representations

“ What are the hidden units in an RBM?
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Stacked RBMs

Here is a cheat.

Having learnt an RBM. We have a mapping from
visible to hidden units.

Given the visibles we can obtain a hidden
representation.

In fact we could just focus on this representation
as a summary for the data.

And we could learn another RBM for that
representation

And so on
24



Graphically

“ How does this work pictorially?

“ The result is a deep belief network.



Representation Learning

Issue: Machine learning is dependent on
representation.

Need method of learning good
representations.

Method needs to be unsupervised.
Representations are hierarchical.

Deep Learning does representation learning. ‘
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Deep Networks in Action

“ Top performing methods in many scenarios.
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