

Questions

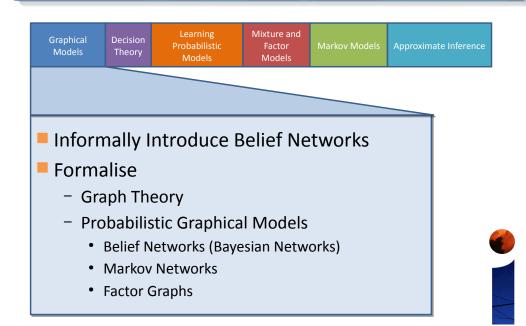
Example

- In a large online gaming site, how do we match players with similar skill levels?
- Slightly harder. Who will beat who in a basketball league?

See <u>www.kaggle.com</u> for the above challenge...

Good answers to both of these use belief networks

Our Journey



Another Question

Consider the variables below. By considering what items are directly dependent on other items can you build a dependency network?

E.g.

Here are the items.

Belief Networks

- Belief Networks represent the structure of probability distributions in ways that relate to the idea of a dependency network.
- Starting Point: The joint probability distribution.

 $P(\mathbf{x}) = P(\mathbf{x}_1)P(\mathbf{x}_2|\mathbf{x}_1)P(\mathbf{x}_3|\mathbf{x}_2,\mathbf{x}_1)P(\mathbf{x}_4|\mathbf{x}_3,\mathbf{x}_2,\mathbf{x}_1)\dots$

or more formally

$$P(\mathbf{x}) = P(\mathbf{x}_1) \prod_{i=2}^{M} P(\mathbf{x}_i | \mathbf{x}_{< i})$$

- I use *M* rather than *D* (which Barber
 used) for the dimensionality of a
 - uses) for the dimensionality of a variable. (D means dataset). <*i* means the set of all the indices that
 - </ means the set of all the indices are less than *i*.
- *x* with a set or vector subscript means the collection of *x* values with subscripts in that set/vector.

Conditional Probability Tables

Let us look at the simple case

For $P(\ensuremath{\mathsf{Toothache}}, \ensuremath{\mathsf{Cavity}})$ we can write

	Toothache = true	$Toothache = \mathrm{false}$
Cavity = true	0.04	0.06
$Cavity = \mathrm{false}$	0.01	0.89

For $P(\mathsf{Cavity}|\mathsf{Toothache})$ we can write

	Toothache = true	$Toothache = \mathrm{false}$
Cavity = true	0.8	0.063
$Cavity = \mathrm{false}$	0.2	0.937

- But what if conditioning on many items?
- Multidimensional table. Very costly.

Conditional Probability

🖣 Consider

$$P(\mathsf{x}_6|\mathsf{x}_5,\mathsf{x}_4,\mathsf{x}_3,\mathsf{x}_2,\mathsf{x}_1)$$

- Suppose all x_i were binary.
- How would you encode this probability?

Independence...

Two random variables are independent if we can write

$$P(\mathbf{x}, \mathbf{y}) = P(\mathbf{x})P(\mathbf{y})$$

We can extend this to sets of random variables

$$P(\mathbf{x}, \mathbf{y}) = P(\mathbf{x})P(\mathbf{y})$$

We can use the rule of conditioning to get

$$P(\mathbf{x}|\mathbf{y}) = \frac{P(\mathbf{x})P(\mathbf{y})}{P(\mathbf{y})} = P(\mathbf{x})$$

Is Toothache independent of Cavity below?

 $P(\mathsf{Toothache},\mathsf{Cavity})$ is

	$Toothache = \mathrm{true}$	$Toothache = \mathrm{false}$
Cavity = true	0.04	0.06
$Cavity = \mathrm{false}$	0.01	0.89

 $P(\ensuremath{\mathsf{Cavity}}|\ensuremath{\mathsf{Toothache}})$ is

So what?

What does this buy us?

	$Toothache = \mathrm{true}$	$Toothache = \mathrm{false}$
Cavity = true	0.8	0.063
$Cavity = \mathrm{false}$	0.2	0.937

Conditional Independence

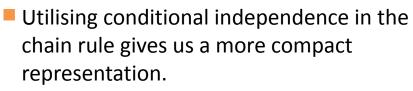
Rule of independence extends to conditional probabilities,

$$P(\mathbf{x}|\mathbf{y}, \mathbf{z}) = \frac{P(\mathbf{x})P(\mathbf{y}|\mathbf{z})}{P(\mathbf{y}|\mathbf{z})} = P(\mathbf{x}|\mathbf{z})$$

- This is conditional independence and is notated by
- Some continents on handling conditional probabilities...
 - Each variable must appear either on the right hand side or left hand side of | not both.
 - Conditional independence means you can drop a variable from the right side.

Graphically

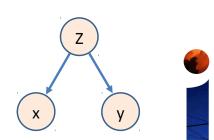
- No independence:
 - $P(\mathsf{x},\mathsf{y},\mathsf{z}) = P(\mathsf{z})P(\mathsf{y}|\mathsf{z})P(\mathsf{x}|\mathsf{y},\mathsf{z})$
- Z x y



 $P(\mathbf{x}) = P(\mathbf{x}_1)P(\mathbf{x}_2|\mathbf{x}_1)P(\mathbf{x}_3|\mathbf{x}_2,\mathbf{x}_1)P(\mathbf{x}_4|\mathbf{x}_3,\mathbf{x}_2,\mathbf{x}_1)\dots$

Think back to the dependency network you built earlier. What were you constructing? I(x,y|z):

 $P(\mathsf{x},\mathsf{y},\mathsf{z}) = P(\mathsf{z})P(\mathsf{y}|\mathsf{z})P(\mathsf{x}|\mathsf{z})$



Stop Point

Questions?

Belief Networks

Graphical notation that represents various conditional independence assertions for a joint probability distribution.

How?

- A Directed Acyclic Graph (DAG) with one node per variable.
- Look at chain rule expansion.
- Include all edges except where a variable is dropped from the conditional probability.
- If P(r|s,t,u,v) appears in chain rule, but

$$P(\mathsf{r}|\mathsf{s},\mathsf{t},\mathsf{u},\mathsf{v}) = P(\mathsf{r}|\mathsf{s},\mathsf{u})$$

then drop directed edge (arrow) from t to r and from v to r.
Looks like we are going to need some graph theory...

Graphs

Graphs

See Barber Chapter 2. This is a quickfire summary.

Graph, Directed Graph, Undirected Graph

Graphs

Parents, Children, Family, Path, Directed Path, Ancestor, Descendent

Graphs

Cycle, Loop, Chord

Graphs

- Directed Acyclic Graphs
 - A Directed Acyclic Graph (DAG) is a graph with only directed edges between nodes, and where there are no directed cycles.
 - Can number the nodes so no edge can go from a node to a node with a lower number.

- Naighbour Clique Mari
- Neighbour, Clique, Maximal Clique

- Relate this to the chain rule.

Graphs	Graphs
Connected, Singly Connected, Spanning Tree	Augmented Graph, Weighted Graph
Graphs	Graphs
Maximally Weighted Spanning Tree	Numerical encoding: edge list, adjacency matrix.

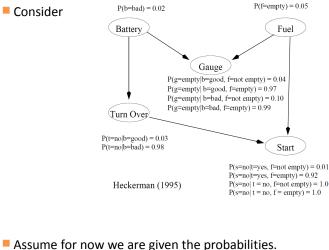
Probabilistic Graphical Models

- When we use graph theoretic methods for representing the structure of probability distributions, we are implementing Probabilistic Graphical Models.
 - Why?
 - But it doesn't add anything does it?
- Undirected Graphical Models, Directed Graphical Models (Belief Networks, Bayesian Networks), Factor Graphs.

Stop Point

Any Questions?

Working with Joint Probabilities



- Assume for now we are given the probabilities.
- Then we can build the full probability distribution.
- = Then we can make que Restagout questions we may ht wat

Inference

- E.g. What is

Belief Network

Definition 1 Belief Network. A Belief Network is a distribution of the form

$$P(\mathbf{x}) = \prod_{i} P(\mathbf{x}_i | \mathbf{x}_{Pa(i)})$$

along with a corresponding directed graph with arrows pointing to i from Pa(i). Here, Pa(i) denotes the parents of the node corresponding to x_i in the graph.

Some questions.

- Does a particular distribution correspond to one belief network?
- Given a set of independence relationships encoded in a network, is that network representation unique?
- Can we always encode all conditional independencies using a belief network?
- Is it right to interpret a belief network causally?

No, No, No, No (not in general), but useful to construct belief nets causally...

Constructing Belief Networks

- Choose a set of variables (those relevant to the domain).
- Choose an order to those variables.
- For each variable in turn
 - Add a node to the graph for that variable.
 - Add directed edges *from* all the existing nodes the variable *directly* depends on *to* the new node.
 - Add the corresponding conditional probability to the chain rule.
- Note the sensitivity to the order.
- If we choose a less good order, we may end up encoding fewer conditional independencies (and so have costly encoding).
- Hint: Choose order causally, from cause to effect, to naturally capture the most independence relationships in the graph.
- But always remember that a belief network does not necessarily encode a causal order.
 - A belief network that does encode causal order is called a *causal graph*.
- Some examples.

Where do the probabilities come from?

Indeed...

- We just pulled them out of thin air didn't we?
- From experts, from local models, learning. More later.

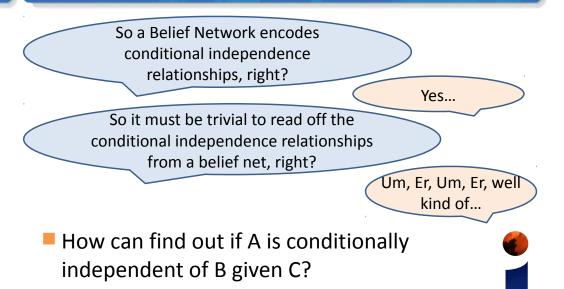
Belief Network

- A belief network decouples
 - Structural aspects of the distribution of variables in the system

from

- Quantification of the probabilities for the variables in the system.
- This is good because it is possible to develop operators on the structure that apply regardless of the precise probabilities.
- This is also good as structural elements can be easier to elicit than the actual probabilities.
- This is the point of Belief Networks.

Independence Relationships



Not good enough to just look locally.

Independence Relationships

- How can find out if A is conditionally independent of B given C?
- Not good enough to just look locally.
- Consider I(x,y|z)...

Rules of D-Separation

- To find out if things are independent we use D-Separation.
- If every path from a set of notes X to a set of Y is blocked by set Z, then we have
- A path is blocked iff

- $I(\mathbf{x}_X, \mathbf{x}_Y | \mathbf{x}_Z)$
- A node in Z is on the path and is head to tail wrt the path.
- A node in Z is on the path and is tail to tail wrt the path.
- There is a node on the path that is head to head, and neither that node nor any of its descendents is in *Z*.

