


Questions

Example
– In a large online gaming site, how do we match 

players with similar skill levels?
– Slightly harder. Who will beat who in a basketball 

league?

 See www.kaggle.com for the above challenge…

 Good answers to both of these use belief 
networks

http://www.kaggle.com/


Our Journey

 Informally Introduce Belief Networks
 Formalise

– Graph Theory
– Probabilistic Graphical Models

● Belief Networks (Bayesian Networks)
● Markov Networks
● Factor Graphs
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Models
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Another Question

 Consider the variables below. By considering what items are 
directly dependent on other items can you build a dependency 
network?

 E.g. 

 Here are the items.



Belief Networks

 Belief Networks represent the structure of 
probability distributions in ways that relate 
to the idea of a dependency network.

 Starting Point: The joint probability 
distribution.

Notation:
• I use M rather than D (which Barber 

uses)  for the dimensionality of a 
variable. (D means dataset).

• <i means the set of all the indices that 
are less than i. 

• x with a set or vector subscript means 
the collection of x values with subscripts 
in that set/vector.

or more formally



Conditional Probability

 Consider

 Suppose all x were binary.
 How would you encode this probability?

  



Conditional Probability Tables
 Let us look at the simple case

 But what if conditioning on many items?
 Multidimensional table. Very costly.



Independence…

 Two random variables are independent if 
we can write

 We can extend this to sets of random 
variables

 We can use the rule of conditioning to get



 Is Toothache independent of Cavity below?

…Independence



Conditional Independence

 Rule of independence extends to conditional 
probabilities,

 This is conditional independence and is notated by
 Some comments on handling conditional 

probabilities…
• Each variable must appear either on the right 

hand side or left hand side of | not both.
• Conditional independence means you can drop 

a variable from the right side.



So what?

 What does this buy us?

 Utilising conditional independence in the 
chain rule gives us a more compact 
representation.

 Think back to the dependency network you 
built earlier. What were you constructing?



Graphically

 No independence:

 I(x,y|z):

Z

yx

Z

yx



Stop Point

 Questions?



Belief Networks
 Graphical notation that represents various conditional 

independence assertions for a joint probability distribution. 
 How?

– A Directed Acyclic Graph (DAG) with one node per variable.
– Look at chain rule expansion.
– Include all edges except where a variable is dropped from the 

conditional probability.
– If P(r|s,t,u,v) appears in chain rule, but

– then drop directed edge (arrow) from t to r and from v to r.
 Looks like we are going to need some graph theory…



Graphs

 See Barber Chapter 2. This is a quickfire 
summary.



Graphs

 Graph, Directed Graph, Undirected Graph



Graphs

 Parents, Children, Family, Path, Directed 
Path, Ancestor, Descendent



Graphs

 Cycle, Loop, Chord



Graphs

 Directed Acyclic Graphs
– A Directed Acyclic Graph (DAG) is a graph with only 

directed edges between nodes, and where there are no 
directed cycles.

– Can number the nodes so no edge can go from a node 
to a node with a lower number.

– Relate this to the chain rule.



Graphs

 Neighbour, Clique, Maximal Clique



Graphs

 Connected, Singly Connected, Spanning Tree



Graphs

 Augmented Graph, Weighted Graph



Graphs

 Maximally Weighted Spanning Tree



Graphs

 Numerical encoding: edge list, adjacency 
matrix.



Probabilistic Graphical Models

 When we use graph theoretic methods for 
representing the structure of probability 
distributions, we are implementing 
Probabilistic Graphical Models.

– Why?
– But it doesn’t add anything does it?

 Undirected Graphical Models, Directed 
Graphical Models (Belief Networks, 
Bayesian Networks), Factor Graphs.



Stop Point

 Any Questions?



Working with Joint Probabilities
 Consider

 Assume for now we are given the probabilities.
 Then we can build the full probability distribution.
 Then we can make queries about questions we might want to answer. 

– E.g. What is
Inference



Belief Network

 Some questions.
– Does a particular distribution correspond to one belief network?
– Given a set of independence relationships encoded in a network, 

is that network representation unique?
– Can we always encode all conditional independencies using a 

belief network?
– Is it right to interpret a belief network causally? 
No, No, No, No (not in general), but useful to construct belief nets causally…



Constructing Belief Networks
 Choose a set of variables (those relevant to the domain).
 Choose an order to those variables.
 For each variable in turn

– Add a node to the graph for that variable.
– Add directed edges from all the existing nodes the variable directly depends 

on to the new node.
– Add the corresponding conditional probability to the chain rule.

 Note the sensitivity to the order.
 If we choose a less good order, we may end up encoding fewer 

conditional independencies (and so have costly encoding).
 Hint: Choose order causally, from cause to effect, to naturally capture 

the most independence relationships in the graph.
 But always remember that a belief network does not necessarily 

encode a causal order. 
– A belief network that does encode causal order is called a causal graph.

 Some examples.



Belief Network
 A belief network decouples

– Structural aspects of the distribution of variables in the system

from
– Quantification of the probabilities for the variables in the system.

 This is good because it is possible to develop operators on the 
structure that apply regardless of the precise probabilities.

 This is also good as structural elements can be easier to elicit 
than the actual probabilities.

 This is the point of Belief Networks.



Where do the probabilities come from?

 Indeed…
 We just pulled them out of thin air didn’t 

we?
 From experts, from local models, learning. 

More later.



Independence Relationships

 How can find out if A is conditionally 
independent of B given C?

 Not good enough to just look locally.

So a Belief Network encodes 
conditional independence 

relationships, right?
Yes…

So it must be trivial to read off the 
conditional independence relationships 

from a belief net, right?
Um, Er, Um, Er, well 

kind of…



Independence Relationships
 How can find out if A is conditionally independent of B 

given C?
 Not good enough to just look locally.
 Consider I(x,y|z)…

z
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r



Rules of D-Separation
 To find out if things are independent we use D-Separation.
 If every path from a set of notes X to a set of Y is blocked by set Z, 

then we have 
 A path is blocked iff 

– A node in Z is on the path and is head to tail wrt the path.
– A node in Z is on the path and is tail to tail wrt the path.
– There is a node on the path that is head to head, and neither that node nor 

any of its descendents is in Z.



D-Seperation

 It is… but it makes sense…

What a painful procedure.



More later

 Next week. More belief networks.
 In the meantime.

– Read Barber Chapter 2 and 3
– Practice questions at the end of the chapters.
– Preparation: read Barber Chapter 4
– Try out a kaggle challenge.
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