PMR: Sampling Probabilistic Modelling and Reasoning

Amos Storkey

School of Informatics, University of Edinburgh

Amos Storkey - PMR: Sampling

Outline

1 Monte-Carlo

- 2 Importance Sampling
- 3 Rejection Sampling
- 4 Slice Sampling
- 5 Markov Chains

Outline

1 Monte-Carlo

- 2 Importance Sampling
- 3 Rejection Sampling
- 4 Slice Sampling
- 5 Markov Chains

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Amos Storkey - PMR: Sampling

The problem

- Bayesian methods involve doing integrals wrt distributions which can be hard to do
- Bayesian methods involve representing intractable distributions
- Markov Chain Monte-Carlo

The problem

- Bayesian methods involve doing integrals wrt distributions which can be hard to do
- Bayesian methods involve representing intractable distributions
- Markov Chain Monte-Carlo

Monte Carlo approximation

Suppose we have an expectation we wish to compute: i.e. an integral

$$A = \langle f(\boldsymbol{\theta}) \rangle_{P} = \int d\boldsymbol{\theta} P(\boldsymbol{\theta}) f(\boldsymbol{\theta})$$

This occurs often: compute mean of distribution. Compute error for distribution. Compute best prediction for a distribution etc.

Cannot compute it. But can sample (i.e. draw instance from distribution) from $P(\theta)$.

Use

$$A \approx \tilde{A} = \frac{1}{N_S} \sum_{i=1}^{N_S} f(\boldsymbol{\theta}_i)$$

where θ_i are samples from $P(\theta)$, and N_S is the number of samples.

Monte Carlo approximation

 Suppose we have an expectation we wish to compute: i.e. an integral

$$A = \langle f(\boldsymbol{\theta}) \rangle_{P} = \int d\boldsymbol{\theta} P(\boldsymbol{\theta}) f(\boldsymbol{\theta})$$

This occurs often: compute mean of distribution. Compute error for distribution. Compute best prediction for a distribution etc.

Cannot compute it. But can sample (i.e. draw instance from distribution) from $P(\theta)$.

Use

$$A \approx \tilde{A} = \frac{1}{N_S} \sum_{i=1}^{N_S} f(\boldsymbol{\theta}_i)$$

where θ_i are samples from $P(\theta)$, and N_S is the number of samples.

Monte Carlo approximation

 Suppose we have an expectation we wish to compute: i.e. an integral

$$A = \langle f(\boldsymbol{\theta}) \rangle_{P} = \int d\boldsymbol{\theta} P(\boldsymbol{\theta}) f(\boldsymbol{\theta})$$

This occurs often: compute mean of distribution. Compute error for distribution. Compute best prediction for a distribution etc.

Cannot compute it. But can sample (i.e. draw instance from distribution) from $P(\theta)$.

Use

$$A \approx \tilde{A} = \frac{1}{N_S} \sum_{i=1}^{N_S} f(\boldsymbol{\theta}_i)$$

where θ_i are samples from $P(\theta)$, and N_S is the number of samples.

Monte Carlo approximation

 Suppose we have an expectation we wish to compute: i.e. an integral

$$A = \langle f(\boldsymbol{\theta}) \rangle_{P} = \int d\boldsymbol{\theta} P(\boldsymbol{\theta}) f(\boldsymbol{\theta})$$

This occurs often: compute mean of distribution. Compute error for distribution. Compute best prediction for a distribution etc.

Cannot compute it. But can sample (i.e. draw instance from distribution) from $P(\theta)$.

Use

$$A \approx \tilde{A} = \frac{1}{N_S} \sum_{i=1}^{N_S} f(\boldsymbol{\theta}_i)$$

where θ_i are samples from $P(\theta)$, and N_S is the number of samples.

Monte Carlo approximation

 Suppose we have an expectation we wish to compute: i.e. an integral

$$A = \langle f(\boldsymbol{\theta}) \rangle_{P} = \int d\boldsymbol{\theta} P(\boldsymbol{\theta}) f(\boldsymbol{\theta})$$

This occurs often: compute mean of distribution. Compute error for distribution. Compute best prediction for a distribution etc.

Cannot compute it. But can sample (i.e. draw instance from distribution) from $P(\theta)$.

Use

$$A \approx \tilde{A} = \frac{1}{N_S} \sum_{i=1}^{N_S} f(\boldsymbol{\theta}_i)$$

where θ_i are samples from $P(\theta)$, and N_S is the number of samples.

- Subject to some conditions, the approximation is asymptotically exact: as $N_S \to \infty$, $\tilde{A} \to A$ (Law of large numbers).
- The approximation error (s.d.) scales with $\sqrt{N_S}$ (Central Limit Theorem).
- The approximation depends on the smoothness of the function to be evaluated:
- More specifically the approximation error scales with the variance of the function value *f* over the distribution *P*(*θ*).
- The approximation error is independent of the size of the space that θ resides in.
- The same set of samples can be used for evaluating expectations of many different functions.
- Hence sampling procedure is independent of the expectation to be computed.

- Subject to some conditions, the approximation is asymptotically exact: as N_S → ∞, Ã → A (Law of large numbers).
- The approximation error (s.d.) scales with $\sqrt{N_s}$ (Central Limit Theorem).
- The approximation depends on the smoothness of the function to be evaluated:
- More specifically the approximation error scales with the variance of the function value *f* over the distribution *P*(*θ*).
- The approximation error is independent of the size of the space that θ resides in.
- The same set of samples can be used for evaluating expectations of many different functions.
- Hence sampling procedure is independent of the expectation to be computed.

- Subject to some conditions, the approximation is asymptotically exact: as N_S → ∞, Ã → A (Law of large numbers).
- The approximation error (s.d.) scales with $\sqrt{N_S}$ (Central Limit Theorem).
- The approximation depends on the smoothness of the function to be evaluated:
- More specifically the approximation error scales with the variance of the function value *f* over the distribution *P*(*θ*).
- The approximation error is independent of the size of the space that θ resides in.
- The same set of samples can be used for evaluating expectations of many different functions.
- Hence sampling procedure is independent of the expectation to be computed.

- Subject to some conditions, the approximation is asymptotically exact: as N_S → ∞, Ã → A (Law of large numbers).
- The approximation error (s.d.) scales with $\sqrt{N_S}$ (Central Limit Theorem).
- The approximation depends on the smoothness of the function to be evaluated:
- More specifically the approximation error scales with the variance of the function value *f* over the distribution *P*(*θ*).
- The approximation error is independent of the size of the space that θ resides in.
- The same set of samples can be used for evaluating expectations of many different functions.
- Hence sampling procedure is independent of the expectation to be computed.

- Subject to some conditions, the approximation is asymptotically exact: as N_S → ∞, Ã → A (Law of large numbers).
- The approximation error (s.d.) scales with $\sqrt{N_S}$ (Central Limit Theorem).
- The approximation depends on the smoothness of the function to be evaluated:
- More specifically the approximation error scales with the variance of the function value *f* over the distribution *P*(*θ*).
- The approximation error is independent of the size of the space that θ resides in.
- The same set of samples can be used for evaluating expectations of many different functions.
- Hence sampling procedure is independent of the expectation to be computed.

- Subject to some conditions, the approximation is asymptotically exact: as $N_S \rightarrow \infty$, $\tilde{A} \rightarrow A$ (Law of large numbers).
- The approximation error (s.d.) scales with $\sqrt{N_S}$ (Central Limit Theorem).
- The approximation depends on the smoothness of the function to be evaluated:
- More specifically the approximation error scales with the variance of the function value *f* over the distribution *P*(*θ*).
- The approximation error is independent of the size of the space that θ resides in.
- The same set of samples can be used for evaluating expectations of many different functions.
- Hence sampling procedure is independent of the expectation to be computed.

- Subject to some conditions, the approximation is asymptotically exact: as $N_S \rightarrow \infty$, $\tilde{A} \rightarrow A$ (Law of large numbers).
- The approximation error (s.d.) scales with $\sqrt{N_S}$ (Central Limit Theorem).
- The approximation depends on the smoothness of the function to be evaluated:
- More specifically the approximation error scales with the variance of the function value *f* over the distribution *P*(*θ*).
- The approximation error is independent of the size of the space that θ resides in.
- The same set of samples can be used for evaluating expectations of many different functions.
- Hence sampling procedure is independent of the expectation to be computed.

- Subject to some conditions, the approximation is asymptotically exact: as $N_S \rightarrow \infty$, $\tilde{A} \rightarrow A$ (Law of large numbers).
- The approximation error (s.d.) scales with $\sqrt{N_S}$ (Central Limit Theorem).
- The approximation depends on the smoothness of the function to be evaluated:
- More specifically the approximation error scales with the variance of the function value *f* over the distribution *P*(*θ*).
- The approximation error is independent of the size of the space that θ resides in.
- The same set of samples can be used for evaluating expectations of many different functions.
- Hence sampling procedure is independent of the expectation to be computed.

Monte-Carlo in action

Compute expectations with respect to a N(0, 1) Gaussian Distribution of $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = x^2$, $f_4(x) = 20 \sin(x)$, $f_5(x) = \exp(0.6x^2)$ (!!)

Some Graphs:

Monte-Carlo in action

Compute expectations with respect to a N(0, 1) Gaussian Distribution of $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = x^2$, $f_4(x) = 20 \sin(x)$, $f_5(x) = \exp(0.6x^2)$ (!!)

Some Graphs:

Monte-Carlo in action

- Compute expectations with respect to a N(0, 1) Gaussian Distribution of $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = x^2$, $f_4(x) = 20 \sin(x)$, $f_5(x) = \exp(0.6x^2)$ (!!)
- Some Graphs:

What if samples are not independent?

- Presuming the marginal distributions of the samples are correct, and
- Various other conditions (forgetfulness).
- This still works, but rate of convergence is reduced.

What if samples are not independent?

Presuming the marginal distributions of the samples are correct, and

Various other conditions (forgetfulness).

This still works, but rate of convergence is reduced.

What if samples are not independent?

- Presuming the marginal distributions of the samples are correct, and
- Various other conditions (forgetfulness).
- This still works, but rate of convergence is reduced.

What if samples are not independent?

- Presuming the marginal distributions of the samples are correct, and
- Various other conditions (forgetfulness).
- This still works, but rate of convergence is reduced.

What if we don't know how to sample?

• One dimensional distributions are easy to sample from if we can evaluate the inverse of the cumulative distribution function $F(\theta)$:

```
s=rand;
sample = Finv(s);
```

- Otherwise may need another approach: e.g. Importance Sampling. Rejection Sampling.
- Will presume that we can evaluate the distribution we are interested in (up to a multiplicative constant).

Importance Sampling Summary

- Sample from a distribution that we can sample from.
- Reweight sample to adjust to the distribution we should have sampled from.
- Sample θ_i from Q(θ). Compute weight w_i ∝ P(θ_i)/Q(θ_i).
 Represent expectation using:

$$\tilde{A} = \frac{1}{\sum_{i=1}^{N_s} w_i} \sum_{i=1}^{N_s} w_i f(\boldsymbol{\theta}_i)$$

Importance Sampling Summary

- Sample from a distribution that we can sample from.
- Reweight sample to adjust to the distribution we should have sampled from.
- Sample θ_i from $Q(\theta)$. Compute weight $w_i \propto P(\theta_i)/Q(\theta_i)$.

Represent expectation using:

$$\tilde{A} = \frac{1}{\sum_{i=1}^{N_s} w_i} \sum_{i=1}^{N_s} w_i f(\boldsymbol{\theta}_i)$$

Importance Sampling Summary

- Sample from a distribution that we can sample from.
- Reweight sample to adjust to the distribution we should have sampled from.
- Sample θ_i from $Q(\theta)$. Compute weight $w_i \propto P(\theta_i)/Q(\theta_i)$.

Represent expectation using:

$$\tilde{A} = \frac{1}{\sum_{i=1}^{N_S} w_i} \sum_{i=1}^{N_S} w_i f(\boldsymbol{\theta}_i)$$

Importance Representation

Density
$$P(\mathbf{x}) = \frac{1}{Z}\Phi(\mathbf{x})$$
.
Want

$$E_P(f) = \int d\mathbf{x} \ P(\mathbf{x}) f(\mathbf{x})$$

Can approximate with (given $supp(Q) \supset supp(P)$)

$$E_P(f) = \int d\mathbf{x} \ Q(\mathbf{x}) w(\mathbf{x}) f(\mathbf{x})$$

using $w(\mathbf{x}) = P(\mathbf{x})/Q(\mathbf{x})$

What if cannot compute P, just Φ? Can use

$$E_P(f) = \frac{1}{Z} \int d\mathbf{x} \ Q(\mathbf{x}) w(\mathbf{x}) f(\mathbf{x})$$

using $w(\mathbf{x}) = \Phi(\mathbf{x})/Q(\mathbf{x})$. and $Z = \int d\mathbf{x} w(\mathbf{x})Q(\mathbf{x})$.

Amos Storkey - PMR: Sampling

Importance Sampling

- Suppose we have sample set $\{\mathbf{x}_i | i = 1, 2, ..., N_S\}$ from $Q(\mathbf{x})$, and $w_i = \Phi(\mathbf{x})/Q(\mathbf{x})$.
- Let $Z_S = \sum_{i=1}^{N_S} w_i$. Then

$$\sum_{i=1}^{N_S} f(\mathbf{x}_i) \frac{w_i}{Z_S} \xrightarrow[N_S \to \infty]{} E_P(f).$$

Importance Sampling

Stage 1:

$$E\left(\sum_{i=1}^{N} f(\mathbf{x}_i) \frac{w_i}{Z}\right) = E_P(f)$$

- Law of large numbers implies (given conditions) sum converges to E_P(f).
- Stage 2: Note that also $Z_S \rightarrow Z$. Hence

$$\sum_{i=1}^{N} f(\mathbf{x}_i) \frac{w_i}{Z_S} = \left(\sum_{i=1}^{N} f(\mathbf{x}_i) \frac{w_i}{Z}\right) \left(\frac{Z}{Z_S}\right)$$

tends to $E_P(f)$ almost surely.

Note importance sampling is not an unbiased sampling technique, due to Z/Z_S.

Importance Sampling

- Sample from a distribution that we can sample from.
- Reweight sample to adjust to the distribution we should have sampled from.
- Sample θ_i from Q(θ). Compute weight w_i = P(θ_i)/Q(θ_i).
 Represent expectation using:

$$\tilde{A} = \frac{1}{\sum_{i=1}^{N_s} w_i} \sum_{i=1}^{N_s} w_i f(\boldsymbol{\theta}_i)$$

Importance Sampling

- Sample from a distribution that we can sample from.
- Reweight sample to adjust to the distribution we should have sampled from.
- Sample θ_i from $Q(\theta)$. Compute weight $w_i = P(\theta_i)/Q(\theta_i)$.

Represent expectation using:

$$\tilde{A} = \frac{1}{\sum_{i=1}^{N_s} w_i} \sum_{i=1}^{N_s} w_i f(\boldsymbol{\theta}_i)$$

Importance Sampling

- Sample from a distribution that we can sample from.
- Reweight sample to adjust to the distribution we should have sampled from.
- Sample θ_i from $Q(\theta)$. Compute weight $w_i = P(\theta_i)/Q(\theta_i)$.

Represent expectation using:

$$\tilde{A} = \frac{1}{\sum_{i=1}^{N_S} w_i} \sum_{i=1}^{N_S} w_i f(\boldsymbol{\theta}_i)$$
- Sample from an upper bound to the distribution we want. Throw away samples to get the right shape distribution.
- Choose a distribution $Q(\theta)$ that we can sample from, s.t. $P(\theta) < wQ(\theta)$
- Sample θ_i from $Q(\theta)$. Sample u from uniform U(0,1).
- if $u < P(\theta_i)/wQ(\theta_i)$ accept sample θ_i and move on to next *i*.
- Otherwise throw away θ_i and try again.

- Sample from an upper bound to the distribution we want. Throw away samples to get the right shape distribution.
- Choose a distribution $Q(\theta)$ that we can sample from, s.t. $P(\theta) < wQ(\theta)$
- Sample θ_i from $Q(\theta)$. Sample u from uniform U(0, 1).
- if $u < P(\theta_i)/wQ(\theta_i)$ accept sample θ_i and move on to next *i*.
- Otherwise throw away θ_i and try again.

- Sample from an upper bound to the distribution we want. Throw away samples to get the right shape distribution.
- Choose a distribution $Q(\theta)$ that we can sample from, s.t. $P(\theta) < wQ(\theta)$
- **Sample** θ_i from $Q(\theta)$. Sample *u* from uniform U(0, 1).
- if $u < P(\theta_i)/wQ(\theta_i)$ accept sample θ_i and move on to next *i*.
- Otherwise throw away θ_i and try again.

- Sample from an upper bound to the distribution we want. Throw away samples to get the right shape distribution.
- Choose a distribution $Q(\theta)$ that we can sample from, s.t. $P(\theta) < wQ(\theta)$
- **Sample** θ_i from $Q(\theta)$. Sample *u* from uniform U(0, 1).
- if $u < P(\theta_i)/wQ(\theta_i)$ accept sample θ_i and move on to next *i*.
- Otherwise throw away θ_i and try again.

- Sample from an upper bound to the distribution we want. Throw away samples to get the right shape distribution.
- Choose a distribution $Q(\theta)$ that we can sample from, s.t. $P(\theta) < wQ(\theta)$
- **Sample** θ_i from $Q(\theta)$. Sample *u* from uniform U(0, 1).
- if $u < P(\theta_i)/wQ(\theta_i)$ accept sample θ_i and move on to next *i*.
- Otherwise throw away θ_i and try again.

Sample from area of distribution by

- Initialise y.
- Sampling location x uniformly from the slice at current height: $(x|f(x) \ge y)$ (in practice various methods are used to do this).
- Sampling from the height uniformly at current location $(y|0 < y \le f(x))$.

Repeat

Sample from area of distribution by

Initialise y.

- Sampling location x uniformly from the slice at current height: $(x|f(x) \ge y)$ (in practice various methods are used to do this).
- Sampling from the height uniformly at current location $(y|0 < y \le f(x))$.

Repeat

- Sample from area of distribution by
- Initialise y.
- Sampling location x uniformly from the slice at current height: $(x|f(x) \ge y)$ (in practice various methods are used to do this).
- Sampling from the height uniformly at current location $(y|0 < y \le f(x))$.

Repeat

- Sample from area of distribution by
- Initialise y.
- Sampling location x uniformly from the slice at current height: $(x|f(x) \ge y)$ (in practice various methods are used to do this).
- Sampling from the height uniformly at current location $(y|0 < y \le f(x))$.
- Repeat
- Set of locations is sample.

- Sample from area of distribution by
- Initialise y.
- Sampling location x uniformly from the slice at current height: $(x|f(x) \ge y)$ (in practice various methods are used to do this).
- Sampling from the height uniformly at current location $(y|0 < y \le f(x))$.

Repeat

- Sample from area of distribution by
- Initialise y.
- Sampling location x uniformly from the slice at current height: $(x|f(x) \ge y)$ (in practice various methods are used to do this).
- Sampling from the height uniformly at current location $(y|0 < y \le f(x))$.
- Repeat
- Set of locations is sample.

- Importance sampling and rejection sampling don't work well in higher dimensions.
- See discussion in 29.2, 29.3 of Mackay. Acceptance rate (or weight ratio) is exponentially decreasing with D.
- Other systems e.g. higher dimensional systems need another approach: Markov Chain Monte Carlo.

- Importance sampling and rejection sampling don't work well in higher dimensions.
- See discussion in 29.2, 29.3 of Mackay. Acceptance rate (or weight ratio) is exponentially decreasing with D.
- Other systems e.g. higher dimensional systems need another approach: Markov Chain Monte Carlo.

- Importance sampling and rejection sampling don't work well in higher dimensions.
- See discussion in 29.2, 29.3 of Mackay. Acceptance rate (or weight ratio) is exponentially decreasing with D.
- Other systems e.g. higher dimensional systems need another approach: Markov Chain Monte Carlo.

- Importance sampling and rejection sampling don't work well in higher dimensions.
- See discussion in 29.2, 29.3 of Mackay. Acceptance rate (or weight ratio) is exponentially decreasing with D.
- Other systems e.g. higher dimensional systems need another approach: Markov Chain Monte Carlo.

Markov Chains

A Markov chain is a sequence model:

$$P(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_N) = \prod_t P(\boldsymbol{\theta}_t | \boldsymbol{\theta}_{< t})$$

(where $\theta_{<t}$ denotes the set of all the values of $\theta_{t'}$ for t' < t) for which

$$P(\boldsymbol{\theta}_t|\boldsymbol{\theta}_{< t}) = P(\boldsymbol{\theta}_t|\boldsymbol{\theta}_{t-1}).$$

- This is called the Markov property.
- Typically we are interested in stationary Markov chains: $P(\theta_t|\theta_{t-1})$ is equal to some $P_T(\theta_1|\theta_0)$ for all *t*.
- P($\theta_t | \theta_{t-1}$) is called a transition probability.

Markov Chains

A Markov chain is a sequence model:

$$P(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_N) = \prod_t P(\boldsymbol{\theta}_t | \boldsymbol{\theta}_{< t})$$

(where $\theta_{< t}$ denotes the set of all the values of $\theta_{t'}$ for t' < t) for which

$$P(\boldsymbol{\theta}_t|\boldsymbol{\theta}_{< t}) = P(\boldsymbol{\theta}_t|\boldsymbol{\theta}_{t-1}).$$

- This is called the Markov property.
- Typically we are interested in stationary Markov chains: $P(\theta_t|\theta_{t-1})$ is equal to some $P_T(\theta_1|\theta_0)$ for all t.
- P($\theta_t | \theta_{t-1}$) is called a transition probability.

Markov Chains

A Markov chain is a sequence model:

$$P(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_N) = \prod_t P(\boldsymbol{\theta}_t | \boldsymbol{\theta}_{< t})$$

(where $\theta_{< t}$ denotes the set of all the values of $\theta_{t'}$ for t' < t) for which

$$P(\boldsymbol{\theta}_t|\boldsymbol{\theta}_{< t}) = P(\boldsymbol{\theta}_t|\boldsymbol{\theta}_{t-1}).$$

- This is called the Markov property.
- Typically we are interested in stationary Markov chains: $P(\theta_t|\theta_{t-1})$ is equal to some $P_T(\theta_1|\theta_0)$ for all *t*.
- $P(\theta_t | \theta_{t-1})$ is called a transition probability.

Properties of a Markov Chains

- Ergodicity: a Markov chain is ergodic if you would expect to get from each state to any other state in finite time, and if it is acyclic: its return time to any state is not always divisible by a number > 1.
- Reversibility: a Markov chain is reversible iff it satisfies detailed balance: for some distribution P_B : $P_B(\theta)P_T(\phi|\theta) = P_B(\phi)P_T(\theta|\phi)$
- Equilibrium Distribution: an ergodic Markov chain has a unique equilibrium distribution $P_{\infty}(\theta)$ such that

$$P_{\infty}(\boldsymbol{\theta}) = \int d\boldsymbol{\theta}' P_{T}(\boldsymbol{\theta}|\boldsymbol{\theta}') P_{\infty}(\boldsymbol{\theta}')$$

Properties of a Markov Chains

- Ergodicity: a Markov chain is ergodic if you would expect to get from each state to any other state in finite time, and if it is acyclic: its return time to any state is not always divisible by a number > 1.
- Reversibility: a Markov chain is reversible iff it satisfies detailed balance: for some distribution P_B : $P_B(\theta)P_T(\phi|\theta) = P_B(\phi)P_T(\theta|\phi)$
- Equilibrium Distribution: an ergodic Markov chain has a unique equilibrium distribution $P_{\infty}(\theta)$ such that

$$P_{\infty}(\boldsymbol{\theta}) = \int d\boldsymbol{\theta}' P_{T}(\boldsymbol{\theta}|\boldsymbol{\theta}') P_{\infty}(\boldsymbol{\theta}')$$

Properties of a Markov Chains

- Ergodicity: a Markov chain is ergodic if you would expect to get from each state to any other state in finite time, and if it is acyclic: its return time to any state is not always divisible by a number > 1.
- Reversibility: a Markov chain is reversible iff it satisfies detailed balance: for some distribution P_B : $P_B(\theta)P_T(\phi|\theta) = P_B(\phi)P_T(\theta|\phi)$
- Equilibrium Distribution: an ergodic Markov chain has a unique equilibrium distribution P_∞(θ) such that

$$P_{\infty}(\boldsymbol{\theta}) = \int d\boldsymbol{\theta}' P_{T}(\boldsymbol{\theta}|\boldsymbol{\theta}') P_{\infty}(\boldsymbol{\theta}')$$

Properties of a Markov Chains

- Ergodicity: a Markov chain is ergodic if you would expect to get from each state to any other state in finite time, and if it is acyclic: its return time to any state is not always divisible by a number > 1.
- Reversibility: a Markov chain is reversible iff it satisfies detailed balance: for some distribution P_B: P_B(θ)P_T(φ|θ) = P_B(φ)P_T(θ|φ)
- Equilibrium Distribution: an ergodic Markov chain has a unique equilibrium distribution $P_{\infty}(\theta)$ such that

$$P_{\infty}(\boldsymbol{\theta}) = \int d\boldsymbol{\theta}' P_{T}(\boldsymbol{\theta}|\boldsymbol{\theta}') P_{\infty}(\boldsymbol{\theta}')$$

Properties of a Markov Chains

- Ergodicity: a Markov chain is ergodic if you would expect to get from each state to any other state in finite time, and if it is acyclic: its return time to any state is not always divisible by a number > 1.
- Reversibility: a Markov chain is reversible iff it satisfies detailed balance: for some distribution P_B: P_B(θ)P_T(φ|θ) = P_B(φ)P_T(θ|φ)
- Equilibrium Distribution: an ergodic Markov chain has a unique equilibrium distribution $P_{\infty}(\theta)$ such that

$$P_{\infty}(\boldsymbol{\theta}) = \int d\boldsymbol{\theta}' P_{T}(\boldsymbol{\theta}|\boldsymbol{\theta}') P_{\infty}(\boldsymbol{\theta}')$$

- Did not know how to sample from a distribution $P(\theta)$.
- ldea: Use a Markov chain. Design so $P(\theta)$ is equilibrium distribution.
- Run Markov chain sampling 'for long enough' to get samples from equilibrium distribution.
- How to design Markov chain? Ensure satisfies detailed balance wrt. P(θ),
- Sampling from a chain:
- Initialise state θ_0 . Compute $P_T(\theta_1|\theta_0)$. Sample from this to get θ_1 . Repeat ad infinitum (or until you get bored).
- Markov Chain Monte-Carlo (MCMC)

So what?

Did not know how to sample from a distribution $P(\theta)$.

- ldea: Use a Markov chain. Design so $P(\theta)$ is equilibrium distribution.
- Run Markov chain sampling 'for long enough' to get samples from equilibrium distribution.
- How to design Markov chain? Ensure satisfies detailed balance wrt. P(θ),
- Sampling from a chain:
- Initialise state θ_0 . Compute $P_T(\theta_1|\theta_0)$. Sample from this to get θ_1 . Repeat ad infinitum (or until you get bored).
- Markov Chain Monte-Carlo (MCMC)

- Did not know how to sample from a distribution $P(\theta)$.
- Idea: Use a Markov chain. Design so P(θ) is equilibrium distribution.
- Run Markov chain sampling 'for long enough' to get samples from equilibrium distribution.
- How to design Markov chain? Ensure satisfies detailed balance wrt. $P(\theta)$,
- Sampling from a chain:
- Initialise state θ_0 . Compute $P_T(\theta_1|\theta_0)$. Sample from this to get θ_1 . Repeat ad infinitum (or until you get bored).
- Markov Chain Monte-Carlo (MCMC)

- Did not know how to sample from a distribution $P(\theta)$.
- Idea: Use a Markov chain. Design so P(θ) is equilibrium distribution.
- Run Markov chain sampling 'for long enough' to get samples from equilibrium distribution.
- How to design Markov chain? Ensure satisfies detailed balance wrt. P(θ),
- Sampling from a chain:
- Initialise state θ_0 . Compute $P_T(\theta_1|\theta_0)$. Sample from this to get θ_1 . Repeat ad infinitum (or until you get bored).
- Markov Chain Monte-Carlo (MCMC)

- Did not know how to sample from a distribution $P(\theta)$.
- Idea: Use a Markov chain. Design so P(θ) is equilibrium distribution.
- Run Markov chain sampling 'for long enough' to get samples from equilibrium distribution.
- How to design Markov chain? Ensure satisfies detailed balance wrt. P(θ),
- Sampling from a chain:
- Initialise state θ_0 . Compute $P_T(\theta_1|\theta_0)$. Sample from this to get θ_1 . Repeat ad infinitum (or until you get bored).
- Markov Chain Monte-Carlo (MCMC)

- Did not know how to sample from a distribution $P(\theta)$.
- Idea: Use a Markov chain. Design so P(θ) is equilibrium distribution.
- Run Markov chain sampling 'for long enough' to get samples from equilibrium distribution.
- How to design Markov chain? Ensure satisfies detailed balance wrt. P(θ),
- Sampling from a chain:
- Initialise state θ_0 . Compute $P_T(\theta_1|\theta_0)$. Sample from this to get θ_1 . Repeat ad infinitum (or until you get bored).
- Markov Chain Monte-Carlo (MCMC)

- Did not know how to sample from a distribution $P(\theta)$.
- Idea: Use a Markov chain. Design so P(θ) is equilibrium distribution.
- Run Markov chain sampling 'for long enough' to get samples from equilibrium distribution.
- How to design Markov chain? Ensure satisfies detailed balance wrt. P(θ),
- Sampling from a chain:
- Initialise state θ_0 . Compute $P_T(\theta_1|\theta_0)$. Sample from this to get θ_1 . Repeat ad infinitum (or until you get bored).
- Markov Chain Monte-Carlo (MCMC)

- Did not know how to sample from a distribution $P(\theta)$.
- Idea: Use a Markov chain. Design so P(θ) is equilibrium distribution.
- Run Markov chain sampling 'for long enough' to get samples from equilibrium distribution.
- How to design Markov chain? Ensure satisfies detailed balance wrt. P(θ),
- Sampling from a chain:
- Initialise state θ_0 . Compute $P_T(\theta_1|\theta_0)$. Sample from this to get θ_1 . Repeat ad infinitum (or until you get bored).
- Markov Chain Monte-Carlo (MCMC)

MCMC - Metropolis-Hastings Sampler

- Markov chain: Propose $Q(\theta'|\theta_t)$.
- Accept with probability

$$P(Accept) = \min\left(1, \frac{P(\boldsymbol{\theta}')Q(\boldsymbol{\theta}_t|\boldsymbol{\theta}')}{P(\boldsymbol{\theta}_t)Q(\boldsymbol{\theta}'|\boldsymbol{\theta}_t)}\right)$$

If accept, set $\theta_{t+1} = \theta'$, else set $\theta_{t+1} = \theta_t$.

MCMC - Metropolis-Hastings Sampler

• Markov chain: Propose $Q(\theta'|\theta_t)$.

Accept with probability

$$P(Accept) = \min\left(1, \frac{P(\boldsymbol{\theta}')Q(\boldsymbol{\theta}_t|\boldsymbol{\theta}')}{P(\boldsymbol{\theta}_t)Q(\boldsymbol{\theta}'|\boldsymbol{\theta}_t)}\right)$$

If accept, set $\theta_{t+1} = \theta'$, else set $\theta_{t+1} = \theta_t$.

Amos Storkey — PMR: Sampling

MCMC - Metropolis-Hastings Sampler

- Markov chain: Propose $Q(\theta'|\theta_t)$.
- Accept with probability

$$P(Accept) = \min\left(1, \frac{P(\theta')Q(\theta_t|\theta')}{P(\theta_t)Q(\theta'|\theta_t)}\right)$$

If accept, set $\theta_{t+1} = \theta'$, else set $\theta_{t+1} = \theta_t$.

MCMC - Metropolis-Hastings Sampler

- Markov chain: Propose $Q(\theta'|\theta_t)$.
- Accept with probability

$$P(Accept) = \min\left(1, \frac{P(\theta')Q(\theta_t|\theta')}{P(\theta_t)Q(\theta'|\theta_t)}\right)$$

If accept, set
$$\theta_{t+1} = \theta'$$
, else set $\theta_{t+1} = \theta_t$.

To Do

Examinable Reading

Mackay Chapter 29, 30

Preparatory Reading

Mackay Chapter 45

Extra Reading

Any papers of Radford Neal that take your fancy.

Amos Storkey — PMR: Sampling