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The problem

Bayesian methods involve doing integrals wrt distributions
which can be hard to do
Bayesian methods involve representing intractable
distributions
Markov Chain Monte-Carlo
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Monte Carlo approximation

Suppose we have an expectation we wish to compute: i.e.
an integral

A = 〈 f (θ)〉P =

∫
dθP(θ) f (θ)

This occurs often: compute mean of distribution. Compute
error for distribution. Compute best prediction for a
distribution etc.
Cannot compute it. But can sample (i.e. draw instance
from distribution) from P(θ).
Use

A ≈ Ã =
1

NS

NS∑
i=1

f (θi)

where θi are samples from P(θ), and NS is the number of
samples.
This is a Monte-Carlo approximation.
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Monte Carlo properties

Subject to some conditions, the approximation is
asymptotically exact: as NS →∞, Ã→ A (Law of large
numbers).
The approximation error (s.d.) scales with

√
NS (Central

Limit Theorem).
The approximation depends on the smoothness of the
function to be evaluated:
More specifically the approximation error scales with the
variance of the function value f over the distribution P(θ).
The approximation error is independent of the size of the
space that θ resides in.
The same set of samples can be used for evaluating
expectations of many different functions.
Hence sampling procedure is independent of the
expectation to be computed.
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numbers).
The approximation error (s.d.) scales with

√
NS (Central

Limit Theorem).
The approximation depends on the smoothness of the
function to be evaluated:
More specifically the approximation error scales with the
variance of the function value f over the distribution P(θ).
The approximation error is independent of the size of the
space that θ resides in.
The same set of samples can be used for evaluating
expectations of many different functions.
Hence sampling procedure is independent of the
expectation to be computed.

Amos Storkey — PMR: Sampling 7/23



Monte-Carlo Importance Sampling Rejection Sampling Slice Sampling Markov Chains

Monte Carlo properties

Subject to some conditions, the approximation is
asymptotically exact: as NS →∞, Ã→ A (Law of large
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Monte-Carlo in action

Compute expectations with respect to a N(0, 1) Gaussian
Distribution of f1(x) = 1, f2(x) = x, f3(x) = x2,
f4(x) = 20 sin(x), f5(x) = exp(0.6x2) (!!)
Some Graphs:
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What if samples are not independent?

Presuming the marginal distributions of the samples are
correct, and
Various other conditions (forgetfulness).
This still works, but rate of convergence is reduced.
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What if we don’t know how to sample?

One dimensional distributions are easy to sample from if
we can evaluate the inverse of the cumulative distribution
function F(θ):

s=rand;

sample = Finv(s);

Otherwise may need another approach: e.g. Importance
Sampling. Rejection Sampling.
Will presume that we can evaluate the distribution we are
interested in (up to a multiplicative constant).
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Importance Sampling Summary

Sample from a distribution that we can sample from.
Reweight sample to adjust to the distribution we should
have sampled from.
Sample θi from Q(θ). Compute weight wi ∝ P(θi)/Q(θi).
Represent expectation using:

Ã =
1∑NS

i=1 wi

NS∑
i=1

wi f (θi)
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Importance Representation

Density P(x) = 1
ZΦ(x).

Want
EP( f ) =

∫
dx P(x) f (x)

Can approximate with (given supp(Q) ⊃ supp(P))

EP( f ) =

∫
dx Q(x)w(x) f (x)

using w(x) = P(x)/Q(x)
What if cannot compute P, just Φ? Can use

EP( f ) =
1
Z

∫
dx Q(x)w(x) f (x)

using w(x) = Φ(x)/Q(x). and Z =
∫

dx w(x)Q(x).
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Importance Sampling

Suppose we have sample set {xi|i = 1, 2, . . . ,NS} from Q(x),
and wi = Φ(x)/Q(x).
Let ZS =

∑NS
i=1 wi. Then

NS∑
i=1

f (xi)
wi

ZS

a.s.
−→

NS→∞
EP( f ).

But Why?

Amos Storkey — PMR: Sampling 13/23
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Importance Sampling

Stage 1:

E

 N∑
i=1

f (xi)
wi

Z

 = EP( f )

Law of large numbers implies (given conditions) sum
converges to EP( f ).
Stage 2: Note that also ZS → Z. Hence

N∑
i=1

f (xi)
wi

ZS
=

 N∑
i=1

f (xi)
wi

Z

 ( Z
ZS

)
tends to EP( f ) almost surely.
Note importance sampling is not an unbiased sampling
technique, due to Z/ZS.
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Ã =
1∑NS

i=1 wi

NS∑
i=1

wi f (θi)

Amos Storkey — PMR: Sampling 15/23



Monte-Carlo Importance Sampling Rejection Sampling Slice Sampling Markov Chains

Rejection Sampling

Sample from an upper bound to the distribution we want.
Throw away samples to get the right shape distribution.
Choose a distribution Q(θ) that we can sample from, s.t.
P(θ) < wQ(θ)
Sample θi from Q(θ). Sample u from uniform U(0, 1).
if u < P(θi)/wQ(θi) accept sample θi and move on to next i.
Otherwise throw away θi and try again.
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Slice sampling

Sample from area of distribution by
Initialise y.
Sampling location x uniformly from the slice at current
height: (x| f (x) ≥ y) (in practice various methods are used
to do this).
Sampling from the height uniformly at current location
(y|0 < y ≤ f (x)).
Repeat
Set of locations is sample.
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Higher dimensional systems

Importance sampling and rejection sampling don’t work
well in higher dimensions.
See discussion in 29.2, 29.3 of Mackay. Acceptance rate
(or weight ratio) is exponentially decreasing with D.
Other systems e.g. higher dimensional systems need
another approach: Markov Chain Monte Carlo.
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Markov Chains

A Markov chain is a sequence model:

P(θ1,θ2, . . . ,θN) =
∏

t

P(θt|θ<t)

(where θ<t denotes the set of all the values of θt′ for t′ < t)
for which

P(θt|θ<t) = P(θt|θt−1).

This is called the Markov property.
Typically we are interested in stationary Markov chains:
P(θt|θt−1) is equal to some PT(θ1|θ0) for all t.
P(θt|θt−1) is called a transition probability.
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P(θt|θt−1) is equal to some PT(θ1|θ0) for all t.
P(θt|θt−1) is called a transition probability.
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Properties of a Markov Chains

Ergodicity: a Markov chain is ergodic if you would expect to
get from each state to any other state in finite time, and if it
is acyclic: its return time to any state is not always divisible
by a number > 1.
Reversibility: a Markov chain is reversible iff it satisfies
detailed balance: for some distribution PB:
PB(θ)PT(φ|θ) = PB(φ)PT(θ|φ)
Equilibrium Distribution: an ergodic Markov chain has a
unique equilibrium distribution P∞(θ) such that

P∞(θ) =

∫
dθ′ PT(θ|θ′)P∞(θ′)

An ergodic reversible Markov chain satisfying detailed
balance wrt PB has PB as its unique equilibrium distribution.
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So what?

Did not know how to sample from a distribution P(θ).
Idea: Use a Markov chain. Design so P(θ) is equilibrium
distribution.
Run Markov chain sampling ‘for long enough’ to get
samples from equilibrium distribution.
How to design Markov chain? Ensure satisfies detailed
balance wrt. P(θ),
Sampling from a chain:
Initialise state θ0. Compute PT(θ1|θ0). Sample from this to
get θ1. Repeat ad infinitum (or until you get bored).
Markov Chain Monte-Carlo (MCMC)
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MCMC - Metropolis-Hastings Sampler

Markov chain: Propose Q(θ′|θt).
Accept with probability

P(Accept) = min
(
1,

P(θ′)Q(θt|θ′)
P(θt)Q(θ′|θt)

)

If accept, set θt+1 = θ′, else set θt+1 = θt.
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To Do

Examinable Reading
Mackay Chapter 29, 30

Preparatory Reading
Mackay Chapter 45

Extra Reading
Any papers of Radford Neal that take your fancy.
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