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Monte-Carlo
The problem

m Bayesian methods involve doing integrals wrt distributions
which can be hard to do

m Bayesian methods involve representing intractable
distributions
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Monte-Carlo
Monte Carlo approximation

m Suppose we have an expectation we wish to compute: i.e.
an integral

A= (f(O)p = f 40P(0)£(0)

This occurs often: compute mean of distribution. Compute
error for distribution. Compute best prediction for a
distribution etc.

Amos Storkey — PMR: Sampling 6/23



Monte-Carlo
Monte Carlo approximation

m Suppose we have an expectation we wish to compute: i.e.
an integral

A= (f(O)p = f 40P(0)£(0)

This occurs often: compute mean of distribution. Compute
error for distribution. Compute best prediction for a
distribution etc.

m Cannot compute it. But can sample (i.e. draw instance
from distribution) from P(0).

Amos Storkey — PMR: Sampling 6/23



Monte-Carlo
Monte Carlo approximation

m Suppose we have an expectation we wish to compute: i.e.
an integral

A= (f(O)p = f 40P(0)£(0)

This occurs often: compute mean of distribution. Compute
error for distribution. Compute best prediction for a
distribution etc.

m Cannot compute it. But can sample (i.e. draw instance
from distribution) from P(0).

m Use

1 &
AxA=— 0;
N L./

where 0; are samples from P(0), and Ny is the number of
samples.

Amos Storkey — PMR: Sampling 6/23



Monte-Carlo
Monte Carlo approximation

m Suppose we have an expectation we wish to compute: i.e.
an integral

A= (f(O)p = f 40P(0)£(0)

This occurs often: compute mean of distribution. Compute
error for distribution. Compute best prediction for a
distribution etc.

m Cannot compute it. But can sample (i.e. draw instance
from distribution) from P(0).

m Use

1 &
AxA=— 0;
N L./

where 0; are samples from P(0), and Ny is the number of
samples.
m This is a Monte-Carlo approximation.
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Monte-Carlo
Monte Carlo properties

m Subject to some conditions, the approximation is
asymptotically exact: as Ng — o0, A — A (Law of large
numbers).

m The approximation error (s.d.) scales with /N5 (Central
Limit Theorem).

m The approximation depends on the smoothness of the
function to be evaluated:

m More specifically the approximation error scales with the
variance of the function value f over the distribution P(0).

m The approximation error is independent of the size of the
space that 0 resides in.

m The same set of samples can be used for evaluating
expectations of many different functions.

m Hence sampling procedure is independent of the
expectation to be computed.
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Monte-Carlo

Monte-Carlo in action
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Monte-Carlo
Monte-Carlo in action

m Compute expectations with respect to a N(0, 1) Gaussian
Distribution of f1(x) = 1, f2(x) = x, f3(x) = 2,
fa(x) = 20sin(x), f5(x) = exp(0.6x?) (1)
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Monte-Carlo
Monte-Carlo in action

m Compute expectations with respect to a N(0, 1) Gaussian
Distribution of f1(x) = 1, f2(x) = x, f3(x) = 2,
fa(x) = 20sin(x), f5(x) = exp(0.6x?) (1)

m Some Graphs:
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Monte-Carlo

What if samples are not independent?
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What if samples are not independent?

m Presuming the marginal distributions of the samples are
correct, and

m Various other conditions (forgetfulness).
m This still works, but rate of convergence is reduced.
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Monte-Carlo

What if we don’t know how to sample?

m One dimensional distributions are easy to sample from if
we can evaluate the inverse of the cumulative distribution
function F(0):

s=rand;
sample = Finv(s);

m Otherwise may need another approach: e.g. Importance
Sampling. Rejection Sampling.

m Will presume that we can evaluate the distribution we are
interested in (up to a multiplicative constant).
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Importance Sampling

Importance Sampling Summary

m Sample from a distribution that we can sample from.

m Reweight sample to adjust to the distribution we should
have sampled from.
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Importance Sampling

Importance Sampling Summary

m Sample from a distribution that we can sample from.

m Reweight sample to adjust to the distribution we should
have sampled from.

m Sample 0; from Q(0). Compute weight w; oc P(0;)/Q(6;).
m Represent expectation using:

i 1 i
A= w; f(0;)
Zﬁ\f’l Wi =1
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Importance Sampling
Importance Representation

m Density P(x) = 10(x).
m Want
Er(f) = [ dx P

m Can approximate with (given supp(Q) > supp(P))
Er(f) = [ dx Qo0

using w(x) = P(x)/Q(x)
m What if cannot compute P, just ®? Can use

En(f) = 5 [ dx Q0

using w(x) = B(x)/Q(x). and Z = [ dx w(x)Q(x).
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Importance Sampling
Importance Sampling

m Suppose we have sample set {x;li = 1,2,.

and w; = O(x)/Q(x).
m lLetZs = Zf\fl w;. Then

Y Sz £ En(f)

m But Why?
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Importance Sampling
Importance Sampling

m Stage 1:
N
E [Z} f(x»%) = Ep(f)

m Law of large numbers implies (given conditions) sum
converges to Ep(f).

m Stage 2: Note that also Zs — Z. Hence

- wj - w;i | Z
Yz = (Zl] f(xi>7J(Z—S)

tends to Ep(f) almost surely.

m Note importance sampling is not an unbiased sampling
technique, due to Z/Zs.
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Importance Sampling
Importance Sampling

m Sample from a distribution that we can sample from.

m Reweight sample to adjust to the distribution we should
have sampled from.

m Sample 0; from Q(0). Compute weight w; = P(0;)/Q(6;).
m Represent expectation using:

A 1 i
A= w; £(6))
Y w

Amos Storkey — PMR: Sampling 15/23



Rejection Sampling
Rejection Sampling

m Sample from an upper bound to the distribution we want.
Throw away samples to get the right shape distribution.
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m Choose a distribution Q(0) that we can sample from, s.t.
P(0) < wQ(0)
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Rejection Sampling
Rejection Sampling

m Sample from an upper bound to the distribution we want.
Throw away samples to get the right shape distribution.

m Choose a distribution Q(0) that we can sample from, s.t.
P(0) < wQ(6)

m Sample 0, from Q(0). Sample u from uniform U(0, 1).

m if u < P(0;)/wQ(0;) accept sample 6; and move on to next i.
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Rejection Sampling
Rejection Sampling

m Sample from an upper bound to the distribution we want.
Throw away samples to get the right shape distribution.

m Choose a distribution Q(0) that we can sample from, s.t.
P(0) < wQ(6)

m Sample 0, from Q(0). Sample u from uniform U(0, 1).

m if u < P(0;)/wQ(0;) accept sample 6; and move on to next i.

m Otherwise throw away 6; and try again.
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Slice Sampling
Slice sampling

m Sample from area of distribution by
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Slice Sampling
Slice sampling

m Sample from area of distribution by

m Initialise y.

m Sampling location x uniformly from the slice at current
height: (x|[f(x) > y) (in practice various methods are used
to do this).

m Sampling from the height uniformly at current location
(W0 <y < f(x)).

m Repeat

m Set of locations is sample.
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Slice Sampling
Higher dimensional systems

Amos Storkey — PMR: Sampling 18/23



Slice Sampling
Higher dimensional systems

m Importance sampling and rejection sampling don’t work
well in higher dimensions.
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(or weight ratio) is exponentially decreasing with D.
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Slice Sampling
Higher dimensional systems

m Importance sampling and rejection sampling don’t work
well in higher dimensions.

m See discussion in 29.2, 29.3 of Mackay. Acceptance rate
(or weight ratio) is exponentially decreasing with D.

m Other systems e.g. higher dimensional systems need
another approach: Markov Chain Monte Carlo.
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Markov Chains
Markov Chains

m A Markov chain is a sequence model:

P(01,0,,...,08) = | | P(6:16<)
t

(where 6; denotes the set of all the values of 6y for t/ < f)
for which
P(60<;) = P(6:|6;-1).

m This is called the Markov property.
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Markov Chains
Markov Chains

m A Markov chain is a sequence model:

P(01,0,,...,08) = | | P(6:16<)
t

(where 6; denotes the set of all the values of 6y for t/ < f)
for which

P(6:16<1) = P(6|0;-1).
m This is called the Markov property.

m Typically we are interested in stationary Markov chains:
P(6:0;-1) is equal to some Pr(61]0y) for all t.

m P(0:6;-1) is called a transition probability.
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Markov Chains
Properties of a Markov Chains

m Ergodicity: a Markov chain is ergodic if you would expect to
get from each state to any other state in finite time, and if it
is acyclic: its return time to any state is not always divisible
by a number > 1.
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Properties of a Markov Chains

m Ergodicity: a Markov chain is ergodic if you would expect to
get from each state to any other state in finite time, and if it
is acyclic: its return time to any state is not always divisible
by a number > 1.

m Reversibility: a Markov chain is reversible iff it satisfies
detailed balance: for some distribution Pg:
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unique equilibrium distribution P, (6) such that
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Markov Chains
Properties of a Markov Chains

m Ergodicity: a Markov chain is ergodic if you would expect to
get from each state to any other state in finite time, and if it
is acyclic: its return time to any state is not always divisible
by a number > 1.

m Reversibility: a Markov chain is reversible iff it satisfies
detailed balance: for some distribution Pg:

Pg(0)P1($10) = Pp($p)Pr(01¢)

m Equilibrium Distribution: an ergodic Markov chain has a

unique equilibrium distribution P, (6) such that

Pos(6) = f 40’ Pr(010)P(6)

m An ergodic reversible Markov chain satisfying detailed
balance wrt Pg has Pz as its unique equilibrium distribution.
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Markov Chains
So what?

m Did not know how to sample from a distribution P(6).

m |dea: Use a Markov chain. Design so P(0) is equilibrium
distribution.

m Run Markov chain sampling ‘for long enough’ to get
samples from equilibrium distribution.

m How to design Markov chain? Ensure satisfies detailed
balance wrt. P(0),

m Sampling from a chain:

m [nitialise state 6. Compute Pr(01]60). Sample from this to
get 0,. Repeat ad infinitum (or until you get bored).

m Markov Chain Monte-Carlo (MCMC)
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Markov Chains

MCMC - Metropolis-Hastings Sampler
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Markov Chains

MCMC - Metropolis-Hastings Sampler

m Markov chain: Propose Q(6'|6;).
m Accept with probability

P(Accept) = min (1 P(BI)Q(GtIG'))

" P(6)Q(6'16))
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Markov Chains

MCMC - Metropolis-Hastings Sampler

m Markov chain: Propose Q(6'|6;).
m Accept with probability

P(B')Q(the'))

R (e

m If accept, set 0,1 = 0’, else set 0,1 = 6;.
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Markov Chains

Examinable Reading
Mackay Chapter 29, 30

Preparatory Reading
Mackay Chapter 45

Extra Reading
Any papers of Radford Neal that take your fancy.
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