


Approximations

Constrain Q to a family and
optimize
Delta function (last lecture)

More general form. E.g.
factorized distribution

Unconstrain Q to impose only
local consistency.

Loopy belief propagation

Sample to obtain Q thatis a
mixture of points.

Combine these methods.




Sampling

Constraining to a delta function: bad.
Constraining to a factorised distribution: inflexible.
What about a mixture of delta functions?

Will need many points. Costly to optimise positions.

Cheaper to have more delta functions, but be sloppier in
positioning them.

Want it to be consistent: has the right distributional limit
(by some means of assessment).

Want to do the right thing on average (unbiased).

Instead of optimizing get positions via sampling.
Desirable properties e.g. Monte-Carlo estimates.
Monte-Carlo estimates are consistent (and unbiased). .

Can obtain posterior samples from intractable distributions
via Markov Chain methods.



® But how do we get samples? Use properties of
Markov Chains:

m Ergodicity: a Markov chain is ergodic if you would expect to
get from each state to any other state in finite time, and if it
Is acyclic: its return time to any state is not always divisible
by a number > 1.

m Reversibility: a Markov chain is reversible iff it satisfies
detailed balance: for some distribution Pg:
Pe(0)Pr(|0) = Pg(¢)Pr(6]5)

m Equilibrium Distribution: an ergodic Markov chain has a
unique equilibrium distribution P..(#) such that

i) = / dé’ Pr(6|0")P..(0)

m An ergodic reversible Markov chain satisfying detailed
balance wrt Pg has Pg as its unique equilibrium
distribution. !



m Did not know how to sample from a distribution P(8).

m Idea: Use a Markov chain. Design so P(8) is equilibrium
distribution.

m Run Markov chain sampling ‘for long enough’ to get
samples from equilibrium distribution.

m How to design Markov chain? Ensure satisfies detailed
balance wrt. P(60),

m Sampling from a chain:

m Initialise state 8,. Compute Pr(01|6p). Sample from this to
get 64. Repeat ad infinitum (or until you get bored).

m Markov Chain Monte-Carlo (MCMC)



Markov Chain Sampling

Want Posterior P(x|D)

Need to approximate. Can we sample from it to
get mixture of deltas approximation?

Not directly but indirectly:

We can desigh a Markov chain to have limit
distribution P(x|D), and sample from the chain.

Markov chain:

PG = ) PCtelxe-1)P(x-1)

Xt—1
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Gibbs Sampling

" Gibbs sampling is one Markov Chain Monte
Carlo method.

= Others discussed in more detail in MLPR

m Markov chain: Adapt 6; keeping all ,.; fixed. i.e.

m Choose / uniformly fromi=1.2,...,D. Set 0;,1 = 6.
Then sample 6, 1 ; from the conditional probability
P(0t+1,i|0t+1,i) where 0,4 ; denotes the set {01 |/ # i}.

m Repeat.

m Can cycle through / either (this is not reversible, but can be .
shown to have a unique equilibrium distribution)



Example: The Boltzmann Machine

m Remember the good old Gaussian

1

P(x) = - exp(~E(x))

where

B(x) = 5 (x— u)"A(x — p)

1
= ExTAx + bTx + const

= X is real valued.

m Does it have to be in these equations?
» What happensto Z if it isn’t?



The Boltzmann Machine

The Boltzmann Machine has the f9rm
P(x) = - exp(~E(x))

where )
E(x) = EXTWX +bTx

- z; € 10,1
but where x is a binary vector ~ " 10,1}
Z is now not simple to compute.

Consider the following questions:
What is the graphical model for a Boltzmann Machine?
What does a Boltzmann Machine model that a Gaussian doesn’t?
What sort of information can be captured?
How can we do learning and inference in a Boltzmann Machine?
What form does the Energy function take.

We will discuss



ML and Graphical Models

Remember: need to be able to compute with both prior and
posterior.

Previously we wrote

Let x* = ((v*)", (h")")”, and P(x|0) = 7 exp(3_; ¢i(xc,|6:))
Using trick from previous slide,

o0, ZlogZP(X“IG) = [ZZP(XG 10, v )69 P(xe, |9=)] 82 log Z(6).

But Z(@) is also a log sum as on previous slide, so we can rewrite

Pockener over (ke yars

O 5, 10:) ¢

] 96

Prior guer lkent
Vo ¢



The Boltzmann Machine

Learning and Inference is hard.

Inference is tough due to high connectivity, and no
tractability.

Can sample using Gibbs sampling.

But even sampling is tough as disconnected regions
of high probability.

Learning is hard because we don’t have either the
prior or posterior to use to get our gradient.
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The Restricted Boltzmann Machine

Let us make things easier.

The Restricted Boltzrlnann Machine has the form
P(x) = 7 exp(—E(x))

where
E(x) =vIWh+alv+b’h
What is its graphical structure?

What are its conditional independence
relationships?

For the RBM the posterior is tractable but the prior
isn’t!
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Gibbs sampling the latent prior

Given the model
Start at any v.
Iterate P(h|v), P(v|h)

Keep iterating until sufficiently converged
Draw samples of v,h.

Use samples in gradient updates.

Takes a long time.

Can cheat: start v at data. Sample h. Do small n .
number of iterations of Gibbs sampling.

Use these is gradient updates.
Contrastive Divergence.
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Learning with samples

Remember: Gibbs sampling for inference?

But how do we ¢

Can just sample |

o learning?
ointly from parameters and

latent variables:

earning as inference.

But that can be hard to get good mixing.
Can we do gradient ascent?

Tough because

gradient estimate is noisy (e.g.

Contrastive Divergence). That effects some

gradient method
Use stochastic gradient ascent.



Stochastic Gradient

m Use the sampling methods to get a noisy
gradient.

m Use noisy gradients to gradually improve
the parameters.
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Stochastic Gradient Methods

Take dataset and split it into minibatches.

Now select a minibatch (sequentially or at random)
Compute the gradient for the minibatch.

Update the parameters.

Move on to the next minibatch.

Reduce the learning rate through time.

Lots of details...

Benefit — make parameter changes on minibatches
not whole datasets. More steps, faster, but noisier

learning. .

For large datasets, the minibatch may contain all the
info you need to get the right gradient direction.
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Stacked RBMs

Having learnt an RBM. We have a mapping from visible
to hidden units.

Given the visibles we can obtain a hidden
representation.

In fact we could just focus on this representation as a
summary for the data.

And we could learn another RBM for that representation

And so on.

The basis for early models of unsupervised deep
learning

Also used as a pretraining method for supervised deep
learning. .
Train a deep unsupervised model.
Leverage the learnt parameters as a model for
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m Sampling

® Boltzmann Machine

m Restricted Boltzmann Machine
“ Deep Learning

m Stochastic Gradient Methods.
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