

Learning

- Being able to learn is of critical importance
 - Need to refine our uncertain knowledge using available data
- Almost all methods of learning require some form of inference over variables.
- Sometimes very approximate inference can still provide sufficient "signal" for learning.
- This week: learning is just another form of inference. It is inference over parameters.
 - Inference: inference using information from data items.
 - Learning: inference using information from data sets.

Parameters

Previous lecture:

- But where do the numbers come from?
- If we don't know the numbers what should we do?

Parameters

If we don't know the numbers we can represent them using parameters.

- But parameters are just unknown items with uncertainty.
- How are they different from random variables?

Parameters

How are they different from random variables?

They are not different

 In fact we can just include parameters in our model and infer them in the same way.

They are different

- Parameters are extrinsic rather than intrinsic quantities. (I'll Explain)
- To infer them we need to condition on data sets not data items.

Parameterising a Distribution.

Previously

$$P(\mathbf{x}) = \frac{1}{Z} \exp\left(-E(\mathbf{x})\right)$$

Now

$$P(D|\boldsymbol{ heta}) = rac{1}{Z(oldsymbol{ heta})^{N_D}} \prod_{n=1}^{N_D} \exp\left(-E(\mathbf{x}^n|oldsymbol{ heta})
ight)$$

where D denotes the data set $D = \{x_1, x_2, \dots, x^{N_D}\}$. $\boldsymbol{\theta}$ denotes the collection of all the parameters.

Note same parameter for each n.

Using Parameters

For P(Toothache, Cavity) we can write

	Toothache = true	$Toothache = \mathrm{false}$
Cavity = true	0.04	0.06
Cavity = false	0.01	0.89

For P(Toothache, Cavity) we can write

	Toothache = $true$	$Toothache = \mathrm{false}$
Cavity = true	θ_1	θ_3
Cavity = false	θ_2	$1-\theta_1-\theta_2-\theta_3$

Plate Notation

Represent repetition in graphical models as a 'plate':

- Items inside the plate, or crossing the plate are repeated each time.
- Items outside are not repeated.

Example

$$P(\theta) \prod_{n=1}^{3} P(x_n) P(y_n | x_n) P(z_n | x_n, \theta)$$

Break

Learning as Inference

- Given data $D=\{\mathbf{v}^n|n=1,2,...,N_D\}=\mathbf{v}^{1:n}$. Have full model $\prod_{n=1}^{N_D}P(\mathbf{v}^n,\mathbf{x}^n,\mathbf{h}^n|\boldsymbol{\theta})$
- Define a prior distribution $P(\theta)$ over parameters to give joint model ΓN_D

$$P(\mathbf{v}^{1:n}, \mathbf{x}^{1:n}, \mathbf{h}^{1:n}, oldsymbol{ heta}) = \left[\prod_{n=1}^{N_D} P(\mathbf{v}^n, \mathbf{x}^n, \mathbf{h}^n | oldsymbol{ heta})
ight] P(oldsymbol{ heta})$$

Now consider a new test case (not in the training set). Index by n=0

$$P(\mathbf{v}^{0:n}, \mathbf{x}^{0:n}, \mathbf{h}^{0:n}, \boldsymbol{\theta}) = \left[\prod_{n=0}^{N_D} P(\mathbf{v}^n, \mathbf{x}^n, \mathbf{h}^n | \boldsymbol{\theta})\right] P(\boldsymbol{\theta})$$

Compute what we want via inference:

$$P(\mathbf{x}^0|\mathbf{v}^0, D) \propto P(\mathbf{x}^0, \mathbf{v}^0|D) = \sum_{\boldsymbol{\theta}, \mathbf{h}^{0:n}, \mathbf{x}^{1:n}} \left[\prod_{n=0}^{N_D} P(\mathbf{v}^n, \mathbf{x}^n, \mathbf{h}^n | \boldsymbol{\theta}) \right] P(\boldsymbol{\theta})$$

Prior

- Note we needed prior $P(\theta)$ to do this.
- Prior comes from assumptions about parameters.
- Sometimes people choose reasonable assumptions.
- Sometimes people choose assumptions that make the maths easy.
- Sometimes people choose a vague prior (but it is still an assumption)
- Note also that the "sum" over θ is really likely to be an integral over θ as parameters will likely be real valued.
- We will be doing some multivariate integrals...

Independent Data Items

- If, conditioned on the parameters, each data item is independent.
 - Can use plate notation.
 - The test data is only connected to the training data via the parameters.

$$P(\mathbf{x}^0, \mathbf{v}^0|D) = \int dm{ heta} P(\mathbf{x}^0, \mathbf{v}^0|m{ heta}) P(m{ heta}|D)$$

- $P(\theta|D)$ is the *posterior* distribution.
- It is what we now know about the parameters having seen the data.

Example

Example

10010101000001011101. $P(p) \propto p(1-p)$

- p denotes the probability of a 1 turning up. What is the probability that the next item x^* is 1?
- p takes one value for all data items. But we don't know what that is!
 Use a distribution to represent and compute with the uncertainty.

$$\int dp \ P(x_* = 1|p)P(p|D) \text{ where } P(p|D) = \frac{P(D|p)P(p)}{P(D)}.$$

Now
$$P(D|p) = \prod_{n} P(x^{n}|p) = p^{N_1}(1-p)^{N_0} = p^9(1-p)^{11}$$

so
$$P(p|D) = \frac{23!}{10!12!}p^{10}(1-p)^{12}$$

meaning $P(x_* = 1) = \int dp \ P(x_* = 1|p)P(p|D)$. Computing this gives 11/24. (Hint: look up Beta distribution).

Note $N_1 = 9$ is the number of ones, and $N_0 = 11$ is the number of zeros.

Learning can be hard.

Why can learning be hard?

$$P(\mathbf{v}, \mathbf{h} | \boldsymbol{\theta}) = rac{1}{Z(\boldsymbol{\theta})} \exp(-E(\mathbf{v}, \mathbf{h}; \boldsymbol{\theta}))$$

where

$$Z(oldsymbol{ heta}) = \int d\mathbf{v} d\mathbf{h} \exp(-E(\mathbf{v},\mathbf{h};oldsymbol{ heta}))$$

- Z depends on the parameters.
- It is not always easy to compute.

Our Journey

Graphical
Models

Learning
Probabilistic
Models

- Introduction to Learning
- Next: Q&A
- Next: Learning exponential family models, with examples.