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Observed Linear Dynamical Systems

The OLDS defines the temporal evolution of a vector vt according to the
discrete-time update equation

vt = Atvt−1

where At is the transition matrix at time t.

Uses
A motivation for studying OLDSs is that many equations that describe the physical
world can be written as an OLDS. OLDSs are interesting since they may be used
as simple prediction models: if vt describes the state of the environment at time t,
then Avt predicts the environment at time t + 1. As such, these models, have
widespread application in many branches of science, from engineering and
physics to economics.
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Eigenanalysis

For the deterministic OLDS if we specify v1, all future values v2,v3, . . . , are defined.

vt = At−1v1 = PΛt−1P−1v1

where Λ = diag (λ1, . . . , λV), is the diagonal eigenvalue matrix, and P is the
corresponding eigenvector matrix of A.

Stability criteria
If λi > 1 then for large t, vt will explode. On the other hand, if λi < 1, then λt−1

i will
tend to zero. For stable systems we require therefore no eigenvalues of magnitude
greater than 1 and only unit eigenvalues will contribute in long term.
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Observed Linear Dynamical System

More generally, we consider a system with additive Gaussian noise:

vt = Atvt−1 + ηt

where ηt is a noise vector sampled from a Gaussian distribution,

N

(
ηt µt,Σt

)
This is equivalent to a first order Markov model

p(vt|vt−1) = N
(
vt Atvt−1 + µt,Σt

)
At t = 1 we have an initial distribution p(v1) = N

(
v1 µ1,Σ1

)
. For t > 1 if the

parameters are time-independent, µt ≡ µ, At ≡ A, Σt ≡ Σ, the process is called
time-invariant.
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Stationary distribution

Consider the one-dimensional linear system with independent additive noise

vt = avt−1 + ηt, ηt ∼ N
(
ηt 0, σ2

v

)
Assuming vt−1 ∼ N

(
vt−1 µt−1, σ2

t−1

)
, then using

〈
ηt

〉
= 0 we have

〈vt〉 = a 〈vt−1〉 +
〈
ηt

〉
⇒ µt = aµt−1〈

v2
t

〉
=

〈
avt−1 + ηt

〉2 = a2
〈
v2

t−1

〉
+ 2a 〈vt−1〉

〈
ηt

〉
+

〈
η2

t

〉
⇒ σ2

t = a2σ2
t−1 + σ2

v

so that vt ∼ N
(
vt aµt−1, a2σ2

t−1 + σ2
v

)
. The stationary distribution satisfies

σ2
∞ = a2σ2

∞ + σ2
v ⇒ σ2

∞ =
σ2

v

1 − a2 , µ∞ = a∞µ1

If a ≥ 1 the variance increases indefinitely. For a < 1, the noise remains steady in
the long run.
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Auto-Regressive Models

A scalar time-invariant auto-regressive model is defined by

vt =

L∑
l=1

alvt−l + ηt, ηt ∼ N
(
ηt µ, σ

2
)

where a = (a1, . . . , aL)T are called the AR coefficients and σ2 is called the innovation
noise. The model predicts the future based on a linear combination of the previous
L observations. This is an Lth order Markov model:

p(v1:T) =

T∏
t=1

p(vt|vt−1, . . . , vt−L), with vi = ∅ for i ≤ 0 and with

p(vt|vt−1, . . . , vt−L) = N

vt

L∑
l=1

alvt−l, σ
2


Introducing the vector of the L previous observations v̂t−1 ≡ [vt−1, vt−2, . . . , vt−L]T

we can write more compactly

p(vt|vt−1, . . . , vt−L) = N
(
vt aTv̂t−1, σ

2
)
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Fitting a trend
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Figure : Fitting an order 3 AR model to the training points. The
x axis represents time, and the y axis the value of the
timeseries. The solid line is the mean prediction and the
dashed lines ± one standard deviation.

AR models are heavily used in financial time-series prediction, being able to capture
simple trends in the data. Another application area is speech processing whereby for a
one-dimensional speech signal partitioned into windows of length T, the AR coefficients
best able to describe the signal in each window are found. These AR coefficients then
form a compressed representation of the signal and are subsequently transmitted for each
window. Such a representation is used for example in telephones and known as a linear
predictive vocoder.
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Training an AR model

Maximum Likelihood training of the AR coefficients is straightforward based on

log p(v1:T) =

T∑
t=1

log p(vt|v̂t−1) = −
1

2σ2

T∑
t=1

(
vt − v̂T

t−1a
)2
−

T
2

log(2πσ2)

Differentiating w.r.t. a and equating to zero we arrive at∑
t

(
vt − v̂T

t−1a
)

v̂t−1 = 0

so that optimally

a =

∑
t

v̂t−1v̂T
t−1

−1 ∑
t

vtv̂t−1

These equations can be solved by Gaussian elimination. Similarly, optimally,

σ2 =
1
T

T∑
t=1

(
vt − v̂T

t−1a
)2

Above we assume that ‘negative’ timesteps are available in order to keep the
notation simple.
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AR model as an OLDS

We can write an OLDS using
vt

vt−1
...

vt−L+1

 =


a1 a2 . . . aL
1 0 . . . 0
... 1 . . . 0
0 . . . 1 0




vt−1
vt−2
...

vt−L

 +


ηt
0
...
0


which can be written as

v̂t = Av̂t−1 + ηt, ηt ∼ N
(
ηt 0,Σ

)
where we define the block matrices

A =

(
a1:L−1 aL

I 0

)
, Σ =

(
σ2 01,1:L−1

01:L−1,1 01:L−1,1:L−1

)
In this representation, the first component of the vector is updated according to the
standard AR model, with the remaining components being copies of the previous
values.
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Time-varying AR model

v1 v2 v3 v4

a1 a2 a3 a4

If at are the latent AR coefficients, the term

vt = v̂T
t−1at + ηt, ηt ∼ N

(
ηt 0, σ2

)
can be viewed as the emission distribution of a latent LDS in which the hidden
variable is at and the time-dependent emission matrix is given by v̂T

t−1. By placing
a simple latent transition

at = at−1 + ηa
t , ηa

t ∼ N
(
ηa

t 0, σ2
aI
)

we encourage the AR coefficients to change slowly with time. This defines a model

p(v1:T, a1:T) =
∏

t

p(vt|at, v̂t−1)p(at|at−1)

Standard smoothing algorithms can then be applied to yield the time-varying AR
coefficients.
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Discrete Fourier Transform

For a sequence x0:N−1 the DFT f0:N−1 is defined as

fk =

N−1∑
n=0

xne−
2πi
N kn, k = 0, . . . ,N − 1

fk is a (complex) representation as to how much frequency k is present in the
sequence x0:N−1. The power of component k is defined as the absolute length of
the complex fk.

Spectrogram
Given a timeseries x1:T the spectrogram at time t is a representation of the
frequencies present in a window localised around t. For each window one
computes the Discrete Fourier Transform, from which we obtain a vector of log
power in each frequency. The window is then moved (usually) one step forward
and the DFT recomputed. Note that by taking the logarithm, small values in the
original signal can translate to visibly appreciable values in the spectrogram.
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Figure : (a): The raw recording of 5 seconds of a nightingale song (with additional
background birdsong). (b): Spectrogram of (a) up to 20,000 Hz. (c): Clustering of the
results in panel (b) using an 8 component Gaussian mixture model. The index (from 1 to
8) of the component most probably responsible for the observation is indicated vertically in
black. (d): The 20 AR coefficients learned using σ2

v = 0.001, σ2
h = 0.001. (e): Clustering

the results in panel (d) using a Gaussian mixture model with 8 components. The AR
components group roughly according to the different song regimes.
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Latent Linear Dynamical Systems

The Latent LDS defines a stochastic linear dynamical system in a latent (or
‘hidden’) space on a sequence of vectors h1:T:

ht = Atht−1 + ηh
t ηh

t ∼ N
(
ηh

t h̄t,Σ
H
t

)
transition model

vt = Btht + ηv
t ηv

t ∼ N
(
ηv

t v̄t,Σ
V
t

)
emission model

where ηh
t and ηv

t are noise vectors. At is called the transition matrix and Bt the
emission matrix. The terms h̄t and v̄t are the hidden and output bias respectively.

Kalman Filter
Another term for the (latent) LDS is Kalman Filter, particularly in the engineering
literature. A ‘filter’ is typically some operation on a signal. We prefer here to focus
on the model viewpoint from which various operations of inference will be applied.
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Probabilistic model description

v1 v2 v3 v4

h1 h2 h3 h4

Figure : A (latent) LDS. Both hidden and
visible variables are Gaussian distributed.

The transition and emission models define a first order Markov model

p(h1:T,v1:T) = p(h1)p(v1|h1)
T∏

t=2

p(ht|ht−1)p(vt|ht)

with the transitions and emissions given by Gaussian distributions

p(ht|ht−1) = N
(
ht Atht−1 + h̄t,Σ

H
t

)
, p(h1) = N

(
h1 µπ,Σπ

)
p(vt|ht) = N

(
vt Btht + v̄t,Σ

V
t

)
One may also include an external input ot at each time, which will add Cot to the
mean of the hidden variable and Dot to the mean of the observation.
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The emission and transition distributions

Explicit expressions for the transition and emission distributions are given below
for the time-invariant case with v̄t = 0, h̄t = 0. Each hidden variable is a
multidimensional Gaussian distributed vector ht, with

p(ht|ht−1) =
1

√
|2πΣH|

exp
(
−

1
2

(ht −Aht−1)T Σ−1
H (ht −Aht−1)

)
which states that ht+1 has a mean equal to Aht with Gaussian fluctuations
described by the covariance matrix ΣH. Similarly,

p(vt|ht) =
1

√
|2πΣV |

exp
(
−

1
2

(vt − Bht)T Σ−1
V (vt − Bht)

)
describes an output vt with mean Bht and covariance ΣV.
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Example: Phasor

Consider a dynamical system defined on two dimensional vectors ht:

ht+1 = γRθht, 0 < γ < 1 with Rθ =

(
cosθ − sinθ
sinθ cosθ

)
Rθ rotates the vector ht through angle θ in one timestep. Under this LDS h will
trace out points on a circle through time. By taking a scalar projection of ht, for
example,

vt = [ht]1 = [1 0]Tht,

the elements vt, t = 1, . . . ,T describe a sinusoid through time. By using a block
diagonal R = blkdiag

(
Rθ1 , . . . ,Rθm

)
and taking a scalar projection of the extended

m × 2 dimensional h vector, one can construct a representation of a signal in terms
of m sinusoidal components.
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Inference

Given an observation sequence v1:T we wish to consider filtering and smoothing,
as we did for the HMM. Since the LDS has the same independence structure as
the HMM, we can use the same independence assumptions in deriving the
updates for the LDS.

Dealing with continuous messages
The filtering recursion becomes

p(ht|v1:t) ∝
∫

ht−1

p(vt|ht)p(ht|ht−1)p(ht−1|v1:t−1), t > 1

Since the product of two Gaussians is another Gaussian, and the integral of a
Gaussian is another Gaussian, the resulting p(ht|v1:t) is also Gaussian. This
closure property of Gaussians means that we may represent
p(ht−1|v1:t−1) = N (ht−1 ft−1,Ft−1) with mean ft−1 and covariance Ft−1. The effect of
a message update is equivalent to updating the mean ft−1 and covariance Ft−1 into
a mean ft and covariance Ft for p(ht|v1:t).
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Filtering

We represent the filtered distribution as a Gaussian with mean ft and covariance
Ft,

p(ht|v1:t) ∼ N (ht ft,Ft)

Our task is then to find a recursion for ft,Ft in terms of ft−1, Ft−1.

The big picture
A convenient approach is to first find the joint distribution p(ht,vt|v1:t−1) and then
condition on vt to find the distribution p(ht|v1:t).
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Filtering

p(ht,vt|v1:t−1) is a Gaussian whose statistics can be found from

vt = Bht + ηv
t , ht = Aht−1 + ηh

t

Using the above, and assuming time-invariance and zero biases, we readily find〈
∆ht∆hT

t |v1:t−1

〉
= A

〈
∆ht−1∆hT

t−1|v1:t−1

〉
AT + ΣH〈

∆vt∆hT
t |v1:t−1

〉
= B

〈
∆ht∆hT

t |v1:t−1

〉
〈
∆vt∆vT

t |v1:t−1

〉
= B

〈
∆ht∆hT

t |v1:t−1

〉
BT + ΣV

〈vt|v1:t−1〉 = BA 〈ht−1|v1:t−1〉 , 〈ht|v1:t−1〉 = A 〈ht−1|v1:t−1〉

In the above, using our moment representation of the forward messages

〈ht−1|v1:t−1〉 ≡ ft−1,
〈
∆ht−1∆hT

t−1|v1:t−1

〉
≡ Ft−1
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Filtering update

Then, using conditioning

ft = Aft−1 + PBT
(
BPBT + ΣV

)−1
(vt − BAft−1)

and covariance
Ft = P + ΣH − PBT

(
BPBT + ΣV

)−1
BP

where
P ≡ AFt−1AT + ΣH

One can write the covariance update as

Ft = (I −KB) P

where we define the Kalman gain matrix

K = PBT
(
ΣV + BPBT

)−1
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Smoothing

By representing the posterior as a Gaussian with mean gt and covariance Gt,

p(ht|v1:T) ∼ N
(
ht gt,Gt

)
we can form a recursion for gt and Gt as follows:

p(ht|v1:T) =

∫
ht+1

p(ht,ht+1|v1:T)

=

∫
ht+1

p(ht|v1:T,ht+1)p(ht+1|v1:T)

=

∫
ht+1

p(ht|v1:t,ht+1)p(ht+1|v1:T)

The term p(ht|v1:t,ht+1) can be found by conditioning the joint distribution

p(ht,ht+1|v1:t) = p(ht+1|ht,��v1:t)p(ht|v1:t)

This procedure is the Rauch-Tung-Striebel Kalman smoother. This is called a
‘correction’ method since it takes the filtered estimate p(ht|v1:t) and ‘corrects’ it to
form a smoothed estimate p(ht|v1:T).
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Newtonian Trajectory Analysis

A toy rocket with unknown mass and initial velocity is launched in the air. In
addition, the constant accelerations from the rocket’s propulsion system are
unknown. Based on noisy measurements of x(t) and y(t), our task is to infer the
position of the rocket at each time. Although this is perhaps most appropriately
considered from the using continuous time dynamics, we will translate this into a
discrete time approximation.

Newton’s laws

d2

dt2 x =
fx(t)
m

,
d2

dt2 y =
fy(t)
m

where m is the mass of the object and fx(t), fy(t) are the horizontal and vertical
forces respectively.
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Discretising time

A naive approach is to reparameterise time to use the variable t̃ such that t ≡ t̃∆,
where t̃ is integer and ∆ is a unit of time. The dynamics is then

x((t̃ + 1)∆) = x(t̃∆) + ∆x′(t̃∆)

y((t̃ + 1)∆) = y(t̃∆) + ∆y′(t̃∆)

where y′(t) ≡ dy
dt . We can write an update equation for the x′ and y′ as

x′((t̃ + 1)∆) = x′(t̃∆) + fx∆/m, y′((t̃ + 1)∆) = y′(t̃∆) + fy∆/m

The instrument which measures x(t) and y(t) is not completely accurate. For
simplicity, we relabel ax(t) = fx(t)/m(t), ay(t) = fy(t)/m(t) – these accelerations will
be assumed to be roughly constant, but unknown :

ax((t̃ + 1)∆) = ax(t̃∆) + ηx, ay((t̃ + 1)∆) = ay(t̃∆) + ηy,

where ηx and ηy are small noise terms.
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Description as an LDS

We describe the above model by considering x′(t), x(t), y′(t), y(t), ax(t), ay(t) as
hidden variables, giving rise to a H = 6 dimensional LDS with transition and
emission matrices as below:

A =



1 0 0 0 ∆ 0
∆ 1 0 0 0 0
0 0 1 0 0 ∆
0 0 ∆ 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, B =

(
0 1 0 0 0 0
0 0 0 1 0 0

)

We place a large variance on their initial values, and attempt to infer the unknown
trajectory.
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Example
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Figure : Estimate of the trajectory of a Newtonian ballistic object based on noisy
observations (small circles). All time labels are known but omitted in the plot. The ‘x’
points are the true positions of the object, and the crosses ‘+’ are the estimated smoothed
mean positions

〈
xt, yt|v1:T

〉
of the object plotted every several time steps.
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