

Welcome

What is the point of this course?

Compare with MLPR

Image courtesy of daveseven, used under creative commons. http://www.flickr.com/photos/daveseven/512897762/

What is the object label for this image?

Car. 1976 Panther J72.

Compare with MLPR

Image © Orange Indus. Creative commons licence

What position will a robot arm be in if we apply a specific set of torques?

Compare with MLPR

Might even involve predicting a number of things at once.

The Difference

- Predict a value
- Or provide error bars
 - i.e. simple distribution.
- Predict each part individually.
- Always condition on the same things (supervised learning task)

- May want to say how things covary with one another.
- May want to be precise about distributions
 - Need to evaluate risks and probabilities.
 - Need to make good decisions based on those risks.
- May want to condition on different things (unsupervised learning task)

What is the point of this course?

A Comment on Randomness

Decorating can be done like this

Image Creative Commons tumblr: wkn-source-code

Images Creative Commons tumblr: brindledog

Or like this

Image Creative Commons tumblr: fryeggs

Images Creative Commons tumblr: fryeggs

Or like this

But it is not a great idea.

Hints on Decorating

When choosing a colour and texture for a sofa...

P(sofa colour|got taste)

 $P(\text{sofa colour} = \text{putrid orange}|\text{got taste}) \approx 0$

Hints on Decorating

But not enough...

Hints on Decorating

This is also a probability distribution

P(lighting colour|carpet colour, carpet pattern, got taste)

What is the point of this course?

This course is about giving the distribution of colours for everything in a tasteful room...

 $P(ext{carpet colour}, ext{sofa colour}, ext{lighting colour}, \\ ext{wall colour}, ext{painting colour}, \dots | ext{got taste})$

Luckily it is not just about rooms...

Explain: Choosing colours jointly. Generalise. Lots of tasteful rooms: sampling.

Break

Where? How?

- Where do we get these distributions from? And how do we use them?
- How do we choose the structure and type of distributions?
 - = Modelling
- Where do we get these distributions from?= Learning
- How do we use them?
 - = Inference

Inference

Suppose we know (precisely)

```
P(\text{carpet colour}, \text{sofa colour}, \text{lighting colour}, \\ \text{wall colour}, \text{painting colour}, \dots | \text{got taste})
```

what might we ask?

Real life questions:

What is the employability of a person given their details?
What is the distribution of future stock prices given the past prices?

Learning and Modelling

Learning

- Prior beliefs → Model and Prior distribution.
- Suppose we have

```
P(\text{carpet colour}, \text{sofa colour}, \text{lighting colour}, \\ \text{wall colour}, \text{painting colour}, \dots | \text{got taste}, \theta)
```

but not some parameters θ .

■ What should we do?

Example

- What a priori assumptions need we make?
 - Each coin toss is independent of other coin tosses.
 - Each toss is with the same coin.
 - Coins can be biased.
 - Most coins are not biased.
 - Those that are, are only slightly biased.
 - Occasional double headed, or double tailed coins.
 - Encode this as $P(\theta)$ where $\theta = P(\text{head})$.
- \blacksquare Once this is done we can uses data to learn θ .

An aside: Priors in the Brain

Logvinenko Illusion

How?

- Learning is actually the same as inference but at a different level.
- Decorating example.

Summary. The whole course relies on the basic rules of probability, and some basic information theory.

Typical Problems

- Relating multiple variables: diagnostics, credit risk, genetics, language, vision,
- Time series modelling: epidemiology, finance,
- Latent discovery: clustering, phylogeny, parsing.
- Making decisions: planning, robotics, multiagent systems, games.

Take home

- We need to move beyond simple models that predict one variable given others.
 - We need to handle many variables together.
 - We need to handle different distributions.
 - We need to use appropriate distributions.
- We can use these models to answer more varied questions via inference.
- We can discover appropriate models from data via learning.
- Inference and Learning are applications of the rules of probability.

Summary

- PMR is about modelling joint distributions and unsupervised learning
- Now you have a feel for what that means
- Things that will be important
 - Understanding the rules of probability.
 - Understanding some key probability distributions and densities.
- See website.