

Recap

■ What did we learn from the last lecture?

Summary

- Examples of Factor Graphs.
- Computing Conditional Independence from factor graphs.
- Motivating Inference in Factor Graphs

Inference in Factor Graphs

- Consider marginalisation and conditioning operations on a tree.
- Conditioning
 - Look at all neighbours. Replace factors at all neighbours to be conditional factors. This is called absorbing.
- Marginalising
 - Find all the factors containing the node to be marginalised. Replace all these factors with one big factor produced by marginalising over those factors only.
 - All other factors stay the same.
- This is the basis of the elimination algorithm.

Sum-Products

Sum distribution in sum-products

$$\begin{split} P(x_1,x_2,x_4,x_5) &= \sum_{x_3} \frac{1}{Z} \psi_1(x_1,x_4) \psi_2(x_1,x_5) \psi_3(x_2,x_3) \psi_4(x_3,x_5) \\ &= \frac{1}{Z} \psi_1(x_1,x_4) \psi_2(x_1,x_5) \sum_{x_3} \psi_3(x_2,x_3) \psi_4(x_3,x_5) \\ &= \frac{1}{Z} \psi_1(x_1,x_4) \psi_2(x_1,x_5) \psi_*(x_2,x_5) \end{split}$$

where

$$\psi_*(x_2,x_5) = \sum_{x_3} \psi_3(x_2,x_3) \psi_4(x_3,x_5)$$

Order matters. Do cheap eliminations first.

Undirected Factor Graphs

- Focus on undirected factor graphs
- Any directed factor graph can be converted to undirected by removing arrows from edges.
- Lose some conditional dependence encoding, but still valid.

Elimination in General Factor Graphs

$$P(C|A,H) = \frac{P(C,A,H)}{\sum_{C} P(C,A,H)} = \frac{\sum_{B,D,E,F,G} P(A,B,C,D,E,F,G,H)}{\sum_{C} P(C,A,H)} \propto \sum_{B,D,E,F,G} \Phi_{1}(A,B,C) \Phi_{2}(A,B,C,D) \Phi_{3}(A,C,E,F,H) \Phi_{4}(C,G,H)$$

$$P(C|A, H) \propto \sum_{B,D,E,F,G} \Phi_1(A, B, C) \Phi_2(A, B, C, D) \Phi_3(A, C, E, F, H) \Phi_4(C, G, H)$$

Elimination Algorithm in Chains

Consider Chains

- If we eliminate from the ends of the chain, then it is cheap: results in a factor over one variable.
- If we eliminate from the middle of the chain then it is cheap: results in a new link in the chain.

Elimination in Trees

- Consider any tree-structured factor graphs.
- Suppose we want the marginal distribution at one node. (Conditioned nodes have been absorbed.)
- Any node of an undirected tree can be viewed as the root. Make this the node you care about.
- Use elimination from leaves of the tree.
 - Just like the chain
 - Each step produces a subtree with at most two node factors.
 - Eventually just left with one node: the root.
 - Have one factor: the marginal distribution for this node.

Message Passing

- We have seen that if we pass elimination messages up and down the tree, we can compute any marginal.
- On a factor graph this results in some simple message passing rules.
- Label variable nodes in factor graph by v: (**notation switch**)
- Turns out we can compute all the single marginals all at once using this message passing.

Variable to factor message

$$\mu_{v \to f} (v) = \prod_{f_i \sim v \setminus f} \mu_{f_i \to v} (v)$$

Messages from extremal variables are set to 1

Factor to variable message

$$\mu_{f \to v}(v) = \sum_{\{v_i\}} f(v, \{v_i\}) \prod_{v_i \sim f \setminus v} \mu_{v_i \to f}(v_i)$$

Messages from extremal factors are set to the factor

Marginal

$$p(v) \propto \prod_{f_i \sim v} \mu_{f_i \to v} (v)$$

Figure: David Barber

Break

Not Tree Structured?

- Message Passing works for tree structured networks.
- What if it is not tree structured?
 - Well then the sizes of the factors created by the elimination process can grow. But elimination still works – it can just be costly.
 - We will see later we can consider a cluster graph.
 - We will see later we can just do approximate inference.

What about joint distributions?

- Computing single marginals is fine, but we might want to say something about joint distributions.
- Computing/working with joint distributions over many variables can be hard.
 - There are combinatorial many options.
 - Computing the normalisation is costly.
- However we can compute the highest posterior probability state.
 - Max product algorithm instead of sum product algorithm.
 - Max distributed just like the sum did in the elimination algorithm.

Max Product

 $p(a,b,c,d) \propto f_1(a,b) f_2(b,c) f_3(c,d) f_4(d)$ a,b,c,d binary variables

$$\max_{a,b,c,d} p(a,b,c,d) = \max_{a,b,c,d} f_1(a,b) f_2(b,c) f_3(c,d) f_4(d)$$

$$= \max_{a} \max_{b} f_1(a,b) \max_{c} f_2(b,c) \max_{d} f_3(c,d) f_4(d)$$

$$\mu_{d \to c}(c)$$

$$\mu_{c \to b}(b)$$

Max Product

Variable to factor message

$$\mu_{v \to f} (v) = \prod_{f_i \sim v \setminus f} \mu_{f_i \to v} (v)$$

Factor to variable message

$$\mu_{f \to v}(v) = \max_{\{v_i\}} f(v, \{v_i\}) \prod_{v_i \sim f \setminus v} \mu_{v_i \to f}(v_i) \quad \boxed{v}_{\mu_{f \to v}(v)}$$

Most probable state (of joint)

$$v^* = \underset{v}{\operatorname{argmax}} \prod_{f_i \sim v} \mu_{f_i \to v} (v)$$

Figure: David Barber

Graphs are Important

- Hopefully you can see now why the graphs are important.
 - The graph determines how the messages are passed.
 - The actual functional form of the factors in the distribution determine what the messages are.

Not a tree?

- What if it is not a tree?
- Actually works for tree decompositions too:
 - Find all the variable sets that are overlaps between factors (we'll call them separator sets, or just separators). Label each separator.
 - Replace the variables nodes with separator nodes in the graph.
 - Can you build a tree with the separators, rather than the variables?
 - For every path in the tree: does each variable only occur on adjacent separators along the path (running intersection property)?
 - Then we can do message passing in this tree decomposition too, at a cost related to the number of states in the variable sets. We'll try to see why...
- What if I can't build a tree decomposition?
 - Then make the factors bigger, until you can build a tree decomposition.
- How?
- Junction Tree Algorithm. Chapter 6 of Barber.
 - This is something to work through yourself using that book
- But if I do this my variable sets at too big and inference is too expensive.
- Ah well. Perhaps you should just pretend it is a tree and pass messages anyway: loopy belief propagation.

Approximate Inference

- In many cases our graphs are not suitable for the exact inference process described to be computationally feasible
- Can resort to approximate inference:
 - Sampling
 - Loopy message passing:
 - Loopy belief propagation.
 - Variational message passing.
 - Expectation Propagation.
- More later...

Our Journey

Graphical Models

Decision Theory

Learning Probabilistic Factor Models

Mixture and Factor Models

Markov Models

Approximate Inference

- Lecture 2&3: Introduce Factor Graphs

 - Content v Form
 - Structure of distributions
 - Conditional Independence in Factor Graphs
- Lecture 4: Inference in Factor Graphs.
- Next Lecture: Other forms of Graphical Models.