Recap

- What did we learn from the last lecture?
Examples of Factor Graphs.

Computing Conditional Independence from factor graphs.

Motivating Inference in Factor Graphs
Inference in Factor Graphs

- Consider marginalisation and conditioning operations on a tree.

- Conditioning
 - Look at all neighbours. Replace factors at all neighbours to be conditional factors. This is called *absorbing*.

- Marginalising
 - Find all the factors containing the node to be marginalised. Replace all these factors with one big factor produced by marginalising over those factors only.
 - All other factors stay the same.

- This is the basis of the elimination algorithm.
Sum-Products

- Sum distribution in sum-products

\[P(x_1, x_2, x_4, x_5) = \sum_{x_3} \frac{1}{Z} \psi_1(x_1, x_4)\psi_2(x_1, x_5)\psi_3(x_2, x_3)\psi_4(x_3, x_5) \]

\[= \frac{1}{Z} \psi_1(x_1, x_4)\psi_2(x_1, x_5) \sum_{x_3} \psi_3(x_2, x_3)\psi_4(x_3, x_5) \]

\[= \frac{1}{Z} \psi_1(x_1, x_4)\psi_2(x_1, x_5) \psi_*(x_2, x_5) \]

where

\[\psi_*(x_2, x_5) = \sum_{x_3} \psi_3(x_2, x_3)\psi_4(x_3, x_5) \]

- Order matters. Do cheap eliminations first.
Focus on undirected factor graphs

Any directed factor graph can be converted to undirected by removing arrows from edges.

Lose some conditional dependence encoding, but still valid.
Elimination in General Factor Graphs

\[
P(C|A, H) = \frac{P(C, A, H)}{\sum_{C} P(C, A, H)} = \frac{\sum_{B,D,E,F,G} P(A, B, C, D, E, F, G, H)}{\sum_{C} P(C, A, H)} \propto \sum_{B,D,E,F,G} \Phi_1(A, B, C)\Phi_2(A, B, C, D)\Phi_3(A, C, E, F, H)\Phi_4(C, G, H)
\]

\[
P(C|A, H) \propto \sum_{B,D,E,F,G} \Phi_1(A, B, C)\Phi_2(A, B, C, D)\Phi_3(A, C, E, F, H)\Phi_4(C, G, H)
\]
Consider Chains

- If we eliminate from the ends of the chain, then it is cheap: results in a factor over one variable.
- If we eliminate from the middle of the chain then it is cheap: results in a new link in the chain.
Elimination in Trees

- Consider any tree-structured factor graphs.
- Suppose we want the marginal distribution at one node. (Conditioned nodes have been absorbed.)
- Any node of an undirected tree can be viewed as the root. Make this the node you care about.
- Use elimination from *leaves* of the tree.
 - Just like the chain
 - Each step produces a subtree with at most two node factors.
 - Eventually just left with one node: the root.
 - Have one factor: the marginal distribution for this node.
We have seen that if we pass elimination messages up and down the tree, we can compute any marginal.
- On a factor graph this results in some simple message passing rules.
- Label variable nodes in factor graph by v: **(notation switch)**
- Turns out we can compute all the single marginals all at once using this message passing.

Variable to factor message

$$\mu_{v \rightarrow f} (v) = \prod_{f_i \sim v \setminus f} \mu_{f_i \rightarrow v} (v)$$

Messages from extremal variables are set to 1

Factor to variable message

$$\mu_{f \rightarrow v} (v) = \sum_{\{v_i\}} f(v, \{v_i\}) \prod_{v_i \sim f \setminus v} \mu_{v_i \rightarrow f} (v_i)$$

Messages from extremal factors are set to the factor

Marginal

$$p(v) \propto \prod_{f_i \sim v} \mu_{f_i \rightarrow v} (v)$$

Figure: David Barber
Not Tree Structured?

- Message Passing works for tree structured networks.
- What if it is not tree structured?
 - Well then the sizes of the factors created by the elimination process can grow. But elimination still works – it can just be costly.
 - We will see later we can consider a cluster graph.
 - We will see later we can just do approximate inference.
What about joint distributions?

- Computing single marginals is fine, but we might want to say something about joint distributions.
- Computing/working with joint distributions over many variables can be hard.
 - There are combinatorial many options.
 - Computing the normalisation is costly.
- However we can compute the highest posterior probability state.
 - Max product algorithm instead of sum product algorithm.
 - Max distributed just like the sum did in the elimination algorithm.
Max Product

\[p(a, b, c, d) \propto f_1(a, b) f_2(b, c) f_3(c, d) f_4(d) \quad a, b, c, d \text{ binary variables} \]

\[
\max_{a,b,c,d} p(a, b, c, d) = \max_{a,b,c,d} f_1(a, b) f_2(b, c) f_3(c, d) f_4(d) \\
= \max_{a} \max_{b} f_1(a, b) \max_{c} f_2(b, c) \max_{d} f_3(c, d) f_4(d)
\]

Figure: David Barber
Variable to factor message

$$\mu_{v \rightarrow f}(v) = \prod_{f_i \sim v \backslash f} \mu_{f_i \rightarrow v}(v)$$

Factor to variable message

$$\mu_{f \rightarrow v}(v) = \max_{\{v_i\}} f(v, \{v_i\}) \prod_{v_i \sim f \backslash v} \mu_{v_i \rightarrow f}(v_i)$$

Most probable state (of joint)

$$v^* = \arg\max_v \prod_{f_i \sim v} \mu_{f_i \rightarrow v}(v)$$

Figure: David Barber
Graphs are Important

- Hopefully you can see now why the graphs are important.
 - The graph determines how the messages are passed.
 - The actual functional form of the factors in the distribution determine what the messages are.
Not a tree?

- What if it is not a tree?
- Actually works for tree decompositions too:
 - Find all the variable sets that are overlaps between factors (we’ll call them separator sets, or just separators). Label each separator.
 - Replace the variables nodes with separator nodes in the graph.
 - Can you build a tree with the separators, rather than the variables?
 - For every path in the tree: does each variable only occur on adjacent separators along the path (running intersection property)?
 - Then we can do message passing in this tree decomposition too, at a cost related to the number of states in the variable sets. We’ll try to see why...

- What if I can’t build a tree decomposition?
 - Then make the factors bigger, until you can build a tree decomposition.

- How?
- Junction Tree Algorithm. Chapter 6 of Barber.
 - This is something to work through yourself using that book
- But if I do this my variable sets at too big and inference is too expensive.
- Ah well. Perhaps you should just pretend it is a tree and pass messages anyway: loopy belief propagation.
In many cases our graphs are not suitable for the exact inference process described to be computationally feasible.

- Can resort to approximate inference:
 - Sampling
 - Loopy message passing:
 - Loopy belief propagation.
 - Variational message passing.
 - Expectation Propagation.

- More later...
Our Journey

Lecture 2&3: Introduce Factor Graphs
- Distributions \rightarrow Factor Graphs
- Content v Form
 - Structure of distributions
 - Conditional Independence in Factor Graphs

Lecture 4: Inference in Factor Graphs.

Next Lecture: Other forms of Graphical Models.