


= What did we learn from the last lecture?



= Examples of Factor Graphs.

m Computing Conditional Independence from
factor graphs.

= Motivating Inference in Factor Graphs



Inference in Factor Graphs

Consider marginalisation and conditioning
operations on a tree.

Conditioning

Look at all neighbours. Replace factors at all
neighbours to be conditional factors. This is called
absorbing.

Marginalising

Find all the factors containing the node to be
marginalised. Replace all these factors with one
big factor produced by marginalising over those
factors only.

All other factors stay the same.
This is the basis of the elimination algorithm.



Sum-Products

Sum distribution in sum-products
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Order matters. Do cheap eliminations first. l



Undirected Factor Graphs

Focus on undirected factor graphs

Any directed factor graph can be converted
to undirected by removing arrows from

edges.

Lose some conditional dependence
encoding, but still valid.




Elimination in General Factor Graphs
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Elimination Algorithm in Chains

® Consider Chains
¢+ If we eliminate from the ends of the chain,
then it is cheap: results in a factor over one
variable.
¢+ If we eliminate from the middle of the chain
then it is cheap: results in a new link in the
chain.
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Elimination in Trees

Consider any tree-structured factor graphs.

Suppose we want the marginal distribution at one
node. (Conditioned nodes have been absorbed.)

Any node of an undirected tree can be viewed as the
root. Make this the node you care about.
Use elimination from leaves of the tree.

Just like the chain

Each step produces a subtree with at most two node
factors.

Eventually just left with one node: the root.

Have one factor: the marginal distribution for this
node.



Message Passing

We have seen that if we pass elimination messages up and down the tree, we can compute any
marginal.

On a factor graph this results in some simple message passing rules.
Label variable nodes in factor graph by v: (notation switch)
Turns out we can compute all the single marginals all at once using this message passing.

Variable to factor message W) _H f
L

oo @)= I #pmo @)
firoo\f

Messages from extremal variables are set to 1

Factor to variable message

Hf—v ((U) = Z f(l"‘ {Ui}) H Ho;— f (‘l_r,i)

{vi} vi~ f\v
Messages from extremal factors are set to the
factor
Marginal
p(v) o< [T}, tfimw (V) Figure: David Barber
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Not Tree Structured?

Message Passing works for tree structured
networks.

What if it is not tree structured?

Well then the sizes of the factors created by
the elimination process can grow. But
elimination still works — it can just be costly.

We will see later we can consider a cluster
graph.

We will see later we can just do approximate .

inference. l



What about joint distributions?

Computing single marginals is fine, but we might
want to say something about joint distributions.
Computing/working with joint distributions over
many variables can be hard.

There are combinatorial many options.

Computing the normalisation is costly.
However we can compute the highest posterior
probability state.

Max product algorithm instead of sum product
algorithm.

Max distributed just like the sum did in the elimination
algorithm.
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Max Product
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Max Product

Variable to factor message
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Graphs are Important

Hopefully you can see now why the graphs
are important.

The graph determines how the messages are
passed.

The actual functional form of the factors in the
distribution determine what the messages are.



Not a tree?

What if it is not a tree?

Actually works for tree decompositions too:

Find all the variable sets that are overlaps between factors (we’ll call them
separator sets, or just separators). Label each separator.

Replace the variables nodes with separator nodes in the graph.
Can you build a tree with the separators, rather than the variables?

For every path in the tree: does each variable only occur on adjacent
separators along the path (running intersection property)?

Then we can do message passing in this tree decomposition too, at a cost
related to the number of states in the variable sets. We’'ll try to see why...

What if | can’t build a tree decomposition?
Then make the factors bigger, until you can build a tree decomposition.
How?
Junction Tree Algorithm. Chapter 6 of Barber.
This is something to work through yourself using that book .
But if | do this my variable sets at too big and inference is too expensive.

Ah well. Perhaps you should just pretend it is a tree and pass messages
anyway: loopy belief propagation.
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Approximate Inference

In many cases our graphs are not suitable
for the exact inference process described to
be computationally feasible
Can resort to approximate inference:
Sampling
Loopy message passing:
Loopy belief propagation.

Variational message passing.
Expectation Propagation.

More later...



Our Journey

Learning Mixture and
Probabilistic Factor Markov Models  Approximate Inference
Models Models

Graphical Decision
Models Theory

© Lecture 2&3: Introduce Factor Graphs

¢ Distributions = Factor Graphs

¢  Contentv Form
¢ Structure of distributions

¢+ Conditional Independence in Factor Graphs
© Lecture 4: Inference in Factor Graphs.
®m Next Lecture: Other forms of Graphical Models.




