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Time-Series

A time-series is an ordered sequence:

xa:b = {xa, xa+1, . . . , xb}

Can consider the ‘past’ and ‘future’. The x can be either
discrete or continuous.

Biology
Gene sequences. Emphasis is on understanding sequences,
filling in missing values, clustering sequences, detecting
patterns. Hidden Markov Models are one of the key tools in this
area.

Finance
Price movement prediction.

Planning
Forecasting – eg how many newspaper to deliver to retailers.
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Markov Models

For timeseries data v1, . . . , vT, we need a model p(v1:T). For
causal consistency, it is meaningful to consider the
decomposition

p(v1:T) =
T∏

t=1

p(vt|v1:t−1)

with the convention p(vt|v1:t−1) = p(v1) for t = 1.

v1 v2 v3 v4

Independence assumptions
It is often natural to assume that the influence of the immediate
past is more relevant than the remote past and in Markov
models only a limited number of previous observations are
required to predict the future.
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Markov Chain

Only the recent past is relevant:

p(vt|v1, . . . , vt−1) = p(vt|vt−L, . . . , vt−1)

where L ≥ 1 is the order of the Markov chain

p(v1:T) = p(v1)p(v2|v1)p(v3|v2) . . . p(vT|vT−1)

For a stationary Markov chain the transitions
p(vt = s′|vt−1 = s) = f (s′, s) are time-independent
(‘homogeneous’). Otherwise the chain is non-stationary
(‘inhomogeneous’).

v1 v2 v3 v4

(a)

v1 v2 v3 v4

(b)

Figure : (a): First order Markov chain. (b): Second order Markov
chain.
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Fitting Markov models

Single series
Fitting a first-order stationary Markov chain by Maximum
Likelihood corresponds to setting the transitions by counting the
number of observed transitions in the sequence:

p(vτ = i|vτ−1 = j) ∝
T∑

t=2

I
[
vt = i, vt−1 = j

]
Multiple series
For a set of timeseries, vn

1:Tn
,n = 1, . . . ,N, the transition is given

by counting all transitions across time and datapoints. The
Maximum Likelihood setting for the initial first timestep
distribution is p(v1 = i) ∝

∑
n I

[
vn

1 = i
]
.
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Hidden Markov Models

The HMM defines a Markov chain on hidden (or ‘latent’)
variables h1:T. The observed (or ‘visible’) variables are
dependent on the hidden variables through an emission p(vt|ht).
This defines a joint distribution

p(h1:T, v1:T) = p(v1|h1)p(h1)
T∏

t=2

p(vt|ht)p(ht|ht−1)

For a stationary HMM the transition p(ht|ht−1) and emission
p(vt|ht) distributions are constant through time.

v1 v2 v3 v4

h1 h2 h3 h4

Figure : A first order hidden
Markov model with ‘hidden’
variables dom(ht) = {1, . . . ,H},
t = 1 : T. The ‘visible’ variables vt
can be either discrete or
continuous.

Amos Storkey — PMR Discrete Latent State Dynamical Models 9/1



HMM parameters

Transition Distribution
For a stationary HMM the transition distribution p(ht+1|ht) is
defined by the H ×H transition matrix

Ai′,i = p(ht+1 = i′|ht = i)

and an initial distribution ai = p(h1 = i)

Emission Distribution
For a stationary HMM and emission distribution p(vt|ht) with
discrete states vt ∈ {1, . . . ,V}, we define a V ×H emission
matrix

Bi, j = p(vt = i|ht = j)

For continuous outputs, ht selects one of H possible output
distributions p(vt|ht), ht ∈ {1, . . . ,H}.
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The classical inference problems

Filtering (Inferring the present) p(ht|v1:t)
Prediction (Inferring the future) p(ht|v1:s) t > s
Smoothing (Inferring the past) p(ht|v1:u) t < u
Likelihood p(v1:T)
MaxPost Latent Path (Viterbi alignment) argmax

h1:T

p(h1:T|v1:T)

For prediction, one is also often interested in p(vt|v1:s) for t > s.
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Filtering p(ht|v1:t)

p(ht, v1:t) =
∑
ht−1

p(ht, ht−1, v1:t−1, vt)

=
∑
ht−1

p(vt|���v1:t−1, ht,��ht−1)p(ht|���v1:t−1, ht−1)p(v1:t−1, ht−1)

=
∑
ht−1

p(vt|ht)p(ht|ht−1)p(ht−1, v1:t−1)

Hence if we define α(ht) ≡ p(ht, v1:t) the above gives the
α-recursion

α(ht) = p(vt|ht)︸ ︷︷ ︸
corrector

∑
ht−1

p(ht|ht−1)α(ht−1)

︸                  ︷︷                  ︸
predictor

, t > 1

with α(h1) = p(h1, v1) = p(v1|h1)p(h1)
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Filtering p(ht|v1:t)

Normalisation gives the filtered posterior

p(ht|v1:t) ∝ α(ht)

The likelihood p(v1:T)

p(v1:T) =
∑
hT

p(hT, v1:T) =
∑
hT

α(hT)
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Parallel smoothing p(ht|v1:T)

One way to compute the smoothed quantity is to consider how
ht partitions the series into the past and future:

p(ht, v1:T) = p(ht, v1:t, vt+1:T)
= p(ht, v1:t)︸    ︷︷    ︸

past

p(vt+1:T|ht, v1:t)︸            ︷︷            ︸
future

= α(ht)β(ht)

Forward
The term α(ht) is obtained from the ‘forward’ α recursion.

Backward
The term β(ht) may be obtained using a ‘backward’ β recursion
as we show below. The forward and backward recursions are
independent and may therefore be run in parallel, with their
results combined to obtain the smoothed posterior.
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The β recursion

p(vt:T|ht−1) =
∑

ht

p(vt, vt+1:T, ht|ht−1)

=
∑

ht

p(vt|���vt+1:T, ht,��ht−1)p(vt+1:T, ht|ht−1)

=
∑

ht

p(vt|ht)p(vt+1:T|ht,��ht−1)p(ht|ht−1)

Defining β(ht) ≡ p(vt+1:T|ht) gives the β-recursion

β(ht−1) =
∑

ht

p(vt|ht)p(ht|ht−1)β(ht), 2 ≤ t ≤ T

with β(hT) = 1. The smoothed posterior is then given by

p(ht|v1:T) ≡ γ(ht) =
α(ht)β(ht)∑
ht
α(ht)β(ht)

The α − β passes give the Forward-Backward algorithm.
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Correction smoothing

p(ht|v1:T) =
∑
ht+1

p(ht, ht+1|v1:T) =
∑
ht+1

p(ht|ht+1, v1:t,���vt+1:T)p(ht+1|v1:T)

This gives a recursion for γ(ht) ≡ p(ht|v1:T):

γ(ht) =
∑
ht+1

p(ht|ht+1, v1:t)γ(ht+1)

with γ(hT) ∝ α(hT). The term p(ht|ht+1, v1:t) may be computed
using the filtered results p(ht|v1:t):

p(ht|ht+1, v1:t) ∝ p(ht+1, ht|v1:t) ∝ p(ht+1|ht)p(ht|v1:t)

This is sequential: first complete the α recursions, then do γ
recursion. γ ‘corrects’ the filtered result. Interestingly, once
filtering is done, the states v1:T are not needed during the
subsequent γ recursion.
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Computing the pairwise marginal p(ht, ht+1|v1:T)

To implement the EM algorithm for learning, we require terms
such as p(ht, ht+1|v1:T).

p(ht, ht+1|v1:T) ∝ p(v1:t, vt+1, vt+2:T, ht+1, ht)
= p(vt+2:T|(((

(((v1:t, vt+1, ht, ht+1)p(v1:t, vt+1, ht+1, ht)
= p(vt+2:T|ht+1)p(vt+1|��

�v1:t, ht, ht+1)p(v1:t, ht+1, ht)
= p(vt+2:T|ht+1)p(vt+1|ht+1)p(ht+1|��v1:t, ht)p(v1:t, ht)

Rearranging, we therefore have

p(ht, ht+1|v1:T) ∝ α(ht)p(vt+1|ht+1)p(ht+1|ht)β(ht+1)
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Most likely joint state

The most likely path h1:T of p(h1:T|v1:T) is the same as the most
likely state of

p(h1:T, v1:T) =
∏

t

p(vt|ht)p(ht|ht−1)

Consider

max
hT

T∏
t=1

p(vt|ht)p(ht|ht−1)

=

T−1∏
t=1

p(vt|ht)p(ht|ht−1)

 max
hT

p(vT|hT)p(hT|hT−1)︸                       ︷︷                       ︸
µ(hT−1)

The message µ(hT−1) conveys information from the end of the
chain to the penultimate timestep.
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Most likely joint state

We can continue in this manner, defining the recursion

µ(ht−1) = max
ht

p(vt|ht)p(ht|ht−1)µ(ht), 2 ≤ t ≤ T

with µ(hT) = 1. This means that the effect of maximising over
h2, . . . , hT is compressed into a message µ(h1) so that the most
likely state h∗1 is given by

h∗1 = argmax
h1

p(v1|h1)p(h1)µ(h1)

Once computed, backtracking gives

h∗t = argmax
ht

p(vt|ht)p(ht|h∗t−1)µ(ht)
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Prediction

Predicting the future hidden variable

p(ht+1|v1:t) =
∑

ht

p(ht+1|ht) p(ht|v1:t)︸   ︷︷   ︸
f iltering

Predicting the future observation
The one-step ahead predictive distribution is given by

p(vt+1|v1:t) =
∑

ht,ht+1

p(vt+1|ht+1)p(ht+1|ht)p(ht|v1:t)
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Burglar

The nightmare scenario
You’re asleep upstairs in your house and awoken by noises
from downstairs. You realise that a burglar is on the ground
floor and attempt to understand where he his from listening to
his movements.

Your calculation
You mentally partition the ground floor into a 5 × 5 grid. For
each grid position you know the probability that if someone is in
that position the floorboard will creak. Similarly you know for
each position the probability that someone will bump into
something in the dark. The floorboard creaking and bumping
into objects can occur independently. In addition you assume
that the burglar will move only one grid square – forwards,
backwards, left or right in a single timestep.
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Burglar

(a) ‘Creaks’ (b) ‘Bumps’

Figure : Localising the burglar. The latent
variable ht ∈ {1, . . . , 25} denotes the positions,
defined over the 5 × 5 grid of the ground floor
of the house. (a): A representation of the
probability that the ‘floor will creak’ at each of
the 25 positions, p(vcreak

|h). Light squares
represent probability 0.9 and dark square 0.1.
(b): A representation of the probability
p(vbump

|h) that the burglar will bump into
something in each of the 25 positions.

Based on a series of bump/no bump and creak/no creak information,
where might the burglar might be?

We can represent the scenario using a HMM where h ∈ {1, . . . , 25}
denotes the grid square. The visible variable has a factorised form

and we form a new visible variable with 4 states using

p(v|h) = p(vcreak
|h)p(vbump

|h)
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Burglar

(a) Creaks and Bumps

(b) Filtering

(c) Smoothing

(d) Viterbi

(e) True Burglar position

Figure : Localising the burglar through time for 10 time steps. (a): Each
panel represents the visible information vt =

(
vcreak

t , vbump
t

)
, where vcreak

t = 1
means that there was a ‘creak in the floorboard’ (vcreak

t = 2 otherwise) and
vbump

t = 1 meaning ‘bumped into something’. (b): The filtered distribution
p(ht|v1:t) representing where we think the burglar is. (c): The smoothed
distribution p(ht|v1:10) so that we can figure out where we think the burglar
went. (d): The most likely (Viterbi) burglar path arg maxh1:10 p(h1:10|v1:10). (e):
The actual path of the burglar.

Amos Storkey — PMR Discrete Latent State Dynamical Models 23/1



Learning HMMs

Given a set of dataV =
{
v1, . . . ,vN

}
of N sequences, where

sequence vn = vn
1:Tn

is of length Tn, we seek the HMM transition
matrix A, emission matrix B, and initial vector a most likely to
have have generatedV. We make the i.i.d. assumption so that
each sequence is independently generated and assume that
we know the number of hidden states H. For simplicity we
concentrate here on the case of discrete visible variables,
assuming also we know the number of states V. The EM
algorithm is also straightforward to implement in this case and
leads to closed form expressions for the M-step.

EM algorithm
The application of EM to the HMM model is called the
Baum-Welch algorithm.
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M-step

Assuming i.i.d. data, the M-step maximises ‘energy’:
N∑

n=1

〈
log p(vn

1 , v
n
2 . . . , v

n
Tn , hn

1 , h
n
2 , . . . , h

n
Tn)

〉
pold(hn|vn)

anew
i ≡ pnew(h1 = i) =

1
N

N∑
n=1

pold(h1 = i|vn)

Similarly,

Anew
i′,i ≡ pnew(ht+1 = i′|ht = i) ∝

N∑
n=1

Tn−1∑
t=1

pold(ht = i, ht+1 = i′|vn)

which is the number of transitions from hidden state i to hidden
state i′, averaged over all times and training sequences. Finally,

Bnew
j,i ≡ pnew(vt = j|ht = i) ∝

N∑
n=1

Tn∑
t=1

I
[
vn

t = j
]

pold(ht = i|vn)
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E-step

In computing the M-step above the quantities pold(h1 = i|vn),
pold(ht = i, ht+1 = i′|vn) and pold(ht = i|vn) are obtained by
inference.

Parameter initialisation
The EM algorithm converges to a local maximum of the
likelihood and, in general, there is no guarantee that the
algorithm will find the global maximum. How best to initialise
the parameters is a thorny issue, with a suitable initialisation of
the emission distribution often being critical for success. A
practical strategy is to initialise the emission p(v|h) based on
first fitting a simpler non-temporal mixture model

∑
h p(v|h)p(h)

to the data.
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Continuous observations

For a continuous vector observation vt, with dim vt = D, we
require a model p(vt|ht) mapping the discrete state ht to a
distribution over outputs.

Message passing inference
Using a continuous output does not change any of the standard
inference message passing equations so that inference can be
carried out for essentially arbitrarily complex emission
distributions. Indeed, filtering, smoothing and Viterbi inference,
the normalisation Z of the emission p(v|h) = φ(v, h)/Z is not
required.

Learning
For learning, however, the emission normalisation constant is
required since this is dependent on the parameters of the
model.
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Mixture emission

To make a richer emission model (particularly for continuous
observations), one approach is use a mixture

p(vt|ht) =
∑

kt

p(vt|kt, ht)p(kt|ht)

where kt is a discrete summation variable.

EM
For learning, it is useful to consider the kt as additional latent
variables, and then apply the standard EM algorithm.
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The HMM-GMM

A common continuous observation mixture emission model
component is a Gaussian

p(vt|kt, ht) = N
(
vt µkt,ht

,Σkt,ht

)
so that kt, ht indexes the K ×H mean vectors and covariance
matrices. EM updates for these means and covariances are
straightforward. These models are common in tracking
applications, in particular in speech recognition (usually under
the constraint that the covariances are diagonal).
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Discriminative training

HMMs can be used for supervised learning of sequences. That
is, for each sequence vn

1:T, we have a corresponding class label
cn. For example, we might associate a particular composer c
with a sequence v1:T and wish to make a model that will predict
the composer for a novel music sequence. A generative
approach to using HMMs for classification is to train a separate
HMM for each class, p(v1:T|c) and subsequently use Bayes’ rule
to form the classification for a novel sequence v∗1:T using

p(c∗|v∗1:T) =
p(v∗1:T|c

∗)p(c∗)∑C
c′=1 p(v∗1:T|c

′)p(c′)

If the data are noisy and difficult to model, however, this
generative approach may not work well since much of the
expressive power of each model is used to model the complex
data, rather than focussing on the decision boundary.
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Discriminative training

In applications such as speech recognition, discriminative
training can result in improved performance. In discriminative
training, define new single discriminative model, formed from
the C HMMs using

p(c|v1:T) =
p(v1:T|c)p(c)∑C

c′=1 p(v1:T|c′)p(c′)

and then maximises the likelihood of a set of observed classes
and corresponding observations v1:T. For a single data pair,
(cn, vn

1:T), the log likelihood is

log p(cn
|vn

1:T) = log p(vn
1:T|c

n)︸         ︷︷         ︸
generative likelihood

+ log p(cn) − log
C∑

c′=1

p(vn
1:T|c

′)p(c′)

The first term above represents the generative likelihood term,
with the last term accounting for the discrimination. Whilst
deriving EM style updates is hampered by the discriminative
terms, computing the gradient is straightforward.
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