

Example

Example

10010101000001011101. $P(p) \propto p(1-p)$

- p denotes the probability of a 1 turning up. What is the probability that the next item x^* is 1?
- p takes one value for all data items. But we don't know what that is!
 Use a distribution to represent and compute with the uncertainty.

$$\int dp \ P(x_* = 1|p)P(p|D) \text{ where } P(p|D) = \frac{P(D|p)P(p)}{P(D)}.$$

Now
$$P(D|p) = \prod_{n} P(x^{n}|p) = p^{N_1}(1-p)^{N_0} = p^9(1-p)^{11}$$

so
$$P(p|D) = \frac{23!}{10!12!}p^{10}(1-p)^{12}$$

meaning $P(x_* = 1) = \int dp \ P(x_* = 1|p)P(p|D)$. Computing this gives 11/24. (Hint: look up Beta distribution).

Note $N_1 = 9$ is the number of ones, and $N_0 = 11$ is the number of zeros.

Summary of Bayesian Methods

■ Define prior model $P(\mathcal{D})$, usually by using

$$P(\mathcal{D}) = \int d\theta \ P(\mathcal{D}|\theta) P(\theta)$$

and defining:

- The likelihood $P(\mathcal{D}|\theta)$ with parameters θ .
- The *prior distribution* (over parameters) $P(\theta|\alpha)$ which might also be parameterized by hyper-parameters α .
- Conditioning on data to get the *posterior distribution* over parameters $P(\theta|\mathcal{D})$.
- Using the posterior distribution for prediction (inference)

$$P(\mathbf{x}^*|\mathcal{D}) = \int d\boldsymbol{\theta} \ P(\mathbf{x}^*|\boldsymbol{\theta})P(\boldsymbol{\theta}|\mathcal{D})$$

Question

- For Bernoulli likelihood with Beta prior, can do Bayesian computation analytically.
- For Binomial likelihood and Beta prior, can do Bayesian computation analytically.
- For Multinomial likelihood and Dirichlet prior, can do Bayesian computation analytically.
- Are there other situations this holds?

Conjugacy

- Yes: conjugate exponential models.
- Good thing: easy to do the sums.
- Bad thing: prior distribution should match beliefs. Does a Beta distribution match your beliefs? Is it good enough?

Exponential Family

Any distribution over some x that can be written as

$$P(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x})\right)$$

with h and g known, is in the *exponential family* of distributions.

- Many of the distributions we have seen are in the exponential family. A notable exception is the t-distribution.
- The η are called the *natural parameters* of the distribution.

Exponential Family

$$P(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x})\right)$$

- More simply....
- Any distribution that can be written such that the interaction term (between parameters and variables) is log linear in the parameters is in the exponential family.
- i.e.

$$\log P(\mathbf{x}|\boldsymbol{\eta}) = \sum_{i} \eta_{i} u_{i}(\mathbf{x}) + (\text{other stuff that only contains } \mathbf{x} \text{ or } \boldsymbol{\eta})$$

- A distribution may usually be parameterized in a way that is different from the exponential family form.
- So sometimes useful to convert to exponential family representation and find the 'natural' parameters.

Exponential Family

E.g. Multivariate distribution x

$$P(\mathbf{x}|\{\log p_k\}) \propto \exp\left(\sum_k x_k \log p_k\right)$$

The Gaussian

The one dimensional Gaussian distribution is given by

$$P(x|\mu,\sigma^2) = N(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- \blacksquare μ is the *mean* of the Gaussian and σ^2 is the *variance*.
- If $\mu = 0$ and $\sigma^2 = 1$ then $N(x; \mu, \sigma^2)$ is called a *standard* Gaussian.

Gaussians

- Remember the normalisation (wider versus taller).
- Remember we can remap to a standard normal: $y = (x \mu)/\sigma$

Multivariate Gaussian

The vector \mathbf{x} is multivariate Gaussian if for mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, it is distributed according to

$$P(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|(2\pi)\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

- The univariate Gaussian is a special case of this.
- Σ is called a covariance matrix. It says how much attributes co-vary. More later.

Gaussian is in Exponential Family

Gaussian Distribution

$$P(\mathbf{x}|\boldsymbol{\eta}) \propto \exp\left[\sum_{k} \eta_{k} x_{k} - \frac{1}{2} \sum_{ij} \Sigma_{ij}^{-1} x_{i} x_{j}\right]$$

Conjugate Exponential

- If the prior takes the same functional form as the posterior for a given likelihood, a prior is said to be conjugate for that likelihood.
- There is a conjugate prior for any exponential family distribution.
- If the prior and likelihood are conjugate and exponential, then the model is said to be conjugate exponential
- In conjugate exponential models, the Bayesian integrals can be done analytically.
- Update rules for conjugate distributions.

Example

- What other items are in the set:
 - Red Orange Yellow Aquamarine
 - Haggis Mountains Loch Celtic Castle
 - Trees, Forests, Pruning, Parent, Machine Learning, Bayesian.

Bayesian Sets

- Have a large database of objects, each described by D^+ (e.g. Web)
- Have a small number of examples from the dataset, each with various (binary) features, which we collect into D_c .
- Want to pick things from D^+ that 'belong to the same set' as those in D_c
- How should we do it?

Bayesian Sets

- Data consists of \mathcal{D}_c and query point \mathbf{x}^* . Denote by \mathcal{D} .
- Two models: \mathcal{M}_1 : \mathcal{D} all from same subset C, or \mathcal{M}_2 : \mathcal{D}_c from the same subset C, but x from the general distribution over all data \mathcal{D}^+

- Parameter vector is vector of (Boolean) probabilities, one for each feature.
- \mathcal{D}^+ is vast, and so presume maximum likelihood estimate good enough for $\mathcal{M}1$: have vector θ^+ for this.

Bayesian Sets

- Parameter vector θ_c for subset C is not known. So put a conjugate prior on the parameters: a Beta distribution for each component i of the feature vector, with hyper-parameters a_i and b_i .
- Compute $P(\mathcal{D}|\mathcal{M}_1)/P(\mathcal{D}|\mathcal{M}_2)$ (called the Bayes Factor).
- The larger this ratio is, the more this favours x* being included in the set.
- Bayesian Model Comparison: parameters integrated out:

$$P(\mathcal{D}|\mathcal{M}_2) = \int P(\mathcal{D}|\theta)P(\theta|\alpha)d\theta$$

Our Journey

Graphical
Models

Learning
Probabilistic
Models

- Introduction to Learning
- Learning exponential family models and Bayesian Set example.
- Next: Approximate Learning and Maximum Likelihood

