


Our Journey

 Information for Decision
 Formalise

– Utility Theory, Expected Utility and Bayesian Decision 
Theory

– Examples
● Decision Problems
● Decision Processes
● Decision Systems
● Markets
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Recap

 We introduced Graphical Models
 We talked about Inference in Graphical Models
 But…
 That’s just information processing
 What do we do with that information?
 Use it in Decision Making
 Any system must make a decision to be useful, even 

if that decision is just what information to provide.

3



Utility Theory

 Utility indicates the subject value of an outcome or 
state of affairs to an individual.

 Usually use U to denote it.
 Utility is a function of many things.
 E.g. U(egg,eggcup) > U(egg, no eggcup) + U(no egg,eggcup).

 Utility simply indicates preference orderings.
– It is an real valued ordinal quantity – only the order 

matters, not the explicit numbers.
– Monotonic transformations of utilities are equivalent.  

 Utility is actually about choice: maximum utility.
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Expected Utility Theory

 But what about utility under uncertainty?
 Think about uncertainty as many possible 

worlds.
 Prefer lottery that increases chances of 

preferred things happening.
 von Neumann-Morgenstern axioms

– Expected Utility Theory
– max Ep(x)(U(x))
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From Wikipedia
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Example
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Example
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Example

9From David Barber



Concavity of Utility

 Millionaires are unlikely to be willing to risk 
losing almost everything in order to become a 
billionaire.

 Utility of money is not just quantity of money.
 Utility is concave. Risk is penalised.
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Subjective Expected Decision Theory

 Or Savage Decision Theory casts DT in terms 
of subjective decision making.

 The Expectation is wrt Posterior Belief.
 Actions -> Outcomes ->Utilities -> Decisions.

 Actually can augment our Bayesian 
Networks to include action and reward 
nodes.
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Example
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Example
 Note: Strictly there 

should only be one 
utility node, as in 
general utilities don’t 
additively decompose
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Markov Decision Processes

 Processes Through Time with actions and 
payoffs
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Markov Decision Processes
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Stop Point

 Questions?

16



Decision in Machine Learning

 Standard Decisions in Machine Learning:
– Classification
– Choosing a path
– Choosing a model
– Labelling
– Defining thresholds
– Accepting a scientific theory

 These should all take account of the utility
 Often refer to loss (negative utility).

17



 E.g.
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Games

 Game Theory formulations involve expected utility:
– Mixed strategies, and outcomes.

 Markets:
– Market Trading and Expected Utility
– E.g. Prediction Markets
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Buying Function

Market equations:



Conclusions

 Decisions are about communication. 
 They say how we decide what to say or do, and what 

not to.
 So Decision Making (and Decision Theory) is a 

necessary endpoint of all useful inference.

 Note the Bayesian view is that it is an endpoint: get 
the probabilities and then make the decision in the 
end.

 In reality any time you do optimization you are making 
a decision. Include the loss function.
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