


Factor Graphs

Remember we often write our models in the form

P(v,h) =  exp(~E(v, b))

Here we use v for visible and h for latent (hidden) variables, at least
some of which we care about.

We found we could use the elimination algorithm to do inference in
models of this form.

This involved passing messages using the structure in E

Worked well in trees. I

But for other network structures it got complicated quickly:

e.g. eliminating a node causes a joint message to all the nodes it
connects to (causing a joint factor).

Use an approximation scheme. ;




Reminder: Divergences

Divergences measure a cost of using a wrong
distribution instead of a correct one.

E.g. KL(Q| |P) — measures the coding cost of
coding using the distribution P instead of the
true distribution Q.

Q(x)

KLQOIP() = [ dx Qo log 5

Sometimes by constraining the set of
distributions we allow, and the ensuring the
divergence to the required distribution is low,
we can do the computation.

Note: placement of dx is for convenience, all logs are natural logs throughout






The Free Energy

1 1

P(V, h) = VA exp(—E'(v, h))= P(hlv) = exp(—E(v, h))

ZP(v)

The problem is computing P(v) and then marginalising over
some of the h to focus on variables we care about.

Consider matching some distribution Q(h|v) to the dis-
tribution we want: P(h|v). Minimizing KL(Q||P) gives
ZEro. SO

0= Hgnz Q(h|v)[log Q(h|v) —log P(h|v)]

Rearranging and using the form for P(v,h) we get
log P(v) = — h|v)E(v,h
og P(v) = max ;Q( [V)E(v,h)

—Y " Q(h|v)log Q(h|v)| —log Z.
h



The Free Energy

More generally

log P(v) = [- ) Q(b|v)E(v,h) — )  Q(h|v)log Q(h|v) | —log Z+K L(Q|| P).

The term

> QMmV)E(v,h) + )  Q(h|v)log Q(h|v)

is the called the “free energy”.

Minimizing K L(Q(h|v)||P((h|v)) also minimizes the free energy.
The (negative of the) minimum of the free energy returns the log
probability of the data.

Want to minimize the free energy to get best Q(h|v). But (1)
minimum might be hard to compute, (2) optimal  might be hard
to marginalise to the variables we care about. So we approximate
this method by constraining the form of ) to something easy to
marginalise. Result: Many different approximate free energies.



Using Free Energies

log P(D|6) > |- ) _Q"(0™E(X",h"68) — ) Q"(h")logQ"(h™)|—log Z.
7 h”» h

Example: mixture models, and Expectation
Maximization Algorithm:

Fix Q, maximize RHS for 8. M-Step.
Fix 8, maximize RHS for Q. E-Step.

Iteration guaranteed to locally maximize log
likelihood.

See Barber and work through EM algorithm for
mixture of Gaussians. l



Mixture of Gaussians
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Using Graphical Structure

Making the dependence of @ on v implicit again, we start
from

log P(v) = s [— Z Q()E(v,h) — Z Q(h)log Q(h)] —log Z.
h h

we can use the graphical structure —E(v,h) = ). ¢:(vp,, he,)
(where C; and D; denote the hidden and visible variables in
factor 4) to get

log P(v) = mx lZZQ(hci)qsi(vDi, he,)

i hg;

— Z Q(h)log Q(h)| —log Z.
h

The first term (Negative Energy) is local - it decomposes to
computations local to the graphical structure.
The second term ( Entropy) is more problematic: not local.






Approximations

Constrain Q to a family and
optimize
Delta function (last lecture)

More general form. E.g.
factorized distribution

Unconstrain Q to impose only
local consistency.

Loopy belief propagation

Sample to obtain Q thatis a
mixture of points.

Combine these methods.




Beyond Deltas

» Maximum posterior can fail to capture mass

of distribution. i



Variational Approx: Constrain Q

log P(v) = max [Z ) Q(he,)éi(vp,, he,)

t hg,
— ) Q(h)log Q(h)] —log Z.
h

Example: Make @ to be factorised: @(h) = ]I, @(h;). Then both

terms are local. Optimize parameters of QQ:

logP(v) > IIIS.X lzz (H Q(h‘.‘])) ¢i(vDi?hCi)

% hC’; FEC;

B Z Z Q(h;)log Q(hj)] —log Z.
i h;

Now entropy is local too. Provides a lower bound to log P(v). Neg-
ative of term in square brackets is the variational free energy.



—

m Fits to best approximate the probability mass
= KL(Q]| | P): does not put mass where there is none .

= Constraints on distributions for which variational
approximation can be used.




Relax Global Distribution

log P(v) = max [ZZQ(hc¢)¢i(VDi,hci) — > Q(h)log Q(h)} —log Z.

i hg, h

Example: Make @@ to be a set of local distributions ;.

10g P(V) ~ {glax [Z Z Qi (hCi)qSi (V.Di! hCi) - Z Z Qi (hC.') IOg Q‘i (hOi)

293 i i hg,

+ Z(di —1)g;(h;)log Qj(hj)] —log Z.

where the maximization is subject to consistency: marginals g; match marginals
of all Q;: i.e. marginalising out all kg, k # j from any (); containing h; gives
the same distribution.
Here, d; is the counting number: the number of neighbours to ¢ in the graph.
The negative of the term in square brackets is called the Bethe Free Energy.

Note locally consistency (with marginals) but not global consistency (with
some global distribution). Probabilistic equivalent of an Escher painting.



Picture

This node counted 3 times instead of 1,
so have to compensate for this overcounting
of the marginal.



Belief propagation in loopy graphs.
If it converges...

...it converges to a local minimum of the Bethe
Free Energy (Yedidia et al 2000).

Running belief propagation in loopy graphs
does approximate inference.

Belief propagation only suitable for certain
distributions (e.g. discrete, Gaussian), where
messages stay tractable.

Don’t forget: methods for inference are also
methods for learning.



Expectation Propagation

» What if messages are not tractable?
™ Project locally to a tractable family.

" |dea behind Expectation Propagation.
= Minka 2001.



Our Journey

Introduction to Learning

Learning exponential family models and Bayesian Set
example.

Approximate Learning and Maximum
Posterior/Likelihood

More Approximate Methods with Free Energies

Sampling, and hybrid methods: stochastic
optimization and stochastic variational methods.
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