


Learning and Inference

Sometimes Bayesian learning and inference
is intractable.

l.e. computing the right posterior
distribution or inference distribution cannot
be done efficiently.

Still need to do learning and inference!
Approximate methods.



Divergences

Divergences measure a cost of using a wrong
distribution instead of a correct one.

E.g. KL(Q| |P) — measures the coding cost of
coding using the distribution P instead of the
true distribution Q.

Q(x)

KLQOIP() = [ dx Qo log 5

Sometimes by constraining the set of
distributions we allow, and the ensuring the
divergence to the required distribution is low,
we can do the computation.

Note: placement of dx is for convenience, all logs are natural logs throughout






Inference to Optimization

Simple case: consider using a delta function
instead of the true distribution.

E.g. In Learning:

Instead of computing a posterior distribution P,
compute the best delta function approximation

Q.

Minimizing KL(Q| | P) means picking the location
for the delta function that maximizes the
posterior.

We have turned learning from an inference to .
an optimizing function: maximize posterior. l



Independent Component Analysis

By way of example

Consider the problem of discovering
independent sources in data.

m independent sources (e.g. speakers)

m different points of observation (e.g.
microphones)

Each microphone “hears” all the sources.

But in different proportions depending on
location.

Want unmixed sources.



ICA

Model P, hlA)=P(vh, A)]] P(h:)
P(v|h,A) = §(v,Ah) °

P(v) = / P(vi, A) [] P(h)db = - de}; a LLP(AY])

B = A"l s0 P(D|B) = |det B[N [ P(1Bv"],)

Can put prior on B. For example an independent uni-
form prior between two extremes for each element of the
matrix.

Then the approximate delta posterior involves maximiz-
ing the posterior, which is the same as maximizing the log
posterior.

log P(B|D) = Nlog |det B|— Z log P([Bv"|.)—log(const).

in



Non Gaussianity

Note that for a Gaussian prior

2

P(h) x e~
the log likelihood becomes

L(B) = Nlog|detB| — Y (v*)"B"Bv" + const

in

which is invariant with respect to an orthogonal rotation
B — RB, with RTR =1.

This means that for a Gaussian prior P(h), we cannot
estimate uniquely the mixing matrix. To break this rota-
tional invariance we therefore need to use a non-Gaussian
prior.



Optimizing

Assuming we have a non-Gaussian prior p(h), taking the derivative w.r.t. B,, we
obtain

a ; N
WM:L(B) = NAw + Z‘ (‘.)([BV]H)‘)b
where d 1 d
. .
pix) = Zxlos ) = 25 7P ™)

A simple gradient ascent learning rule for B is then

B =B +1 {B-T + % Z P(Bv") (v")T}



Optimizing

An alternative ‘natural gradient’ algorithm that approximates a Newton update is
given by multiplying the gradient by B'B on the right to give the update

B =B+n (I - % Z‘ G(Bv") (BV”)TJ B

Here n is an empirically set learning rate.

fast ICA
A popular alternative estimation method is FastlCA and can be related to an

iterative Maximum Likelihood optimisation procedure.



Computing the maximum posterior can be
thought of as approximating the posterior
with the best choice of delta function.

With a uniform prior maximum posterior is
the same as maximum likelihood.

Converts to an optimization problem.

Note: Bayesian Inference is representation
independent. Optimization is representation ¢

dependent. l



ML and Graphical Models

= Maximum likelihood works fine for graphical
models where all nodes are visible.

For fully visible directed graphs, with independent pa-
rameters for each factor:

Zlog P(ang) - ZlogP(xﬂX%a(i),Qi)

So .

0 N o
00; ;10‘% P(x"(0) = ; 90, log P(x;|Xpai), 0:)




ML and Graphical Models

Maximum likelihood not always straightforward in general graphs or graphs with hidden
nodes.

Need to be able to compute with both prior and posterior.
Let x™ = ((v*)T, (h®)T)T. Then we want
Z log Z P(x"|@) (summing out over hidden part of x)
n h»

Useful result which holds for any split of variables into sets S and R. Note we
split clique C; into Sj, the part in S, and R; (i.e. rest), the part not in S.

d d
ﬁlogzexp (Z%(XC,-,QJ')) = ﬁlogzexp (E ¢j(xsj;ij;9j))
¥ Xg 7 ¥ Xg i

> xs 507 EXD (ZJ ¢i(Xs;,XR;,0; ))
Yo, o2 (3, 505, xm,05))

Xg

. eXP(EJ- P (xs,--,- XR;s 0;)) 0 - -
- gsj fos' exp(zj b; (x:’gj s XR;» 9:.")) 00; bilxs,, xRy, 6:))

= ZP(XS|XR,9)%%@&#&30) - ZP(xSi xR,H)aiai@:(xGi,fk))

Xg Xg



ML and Graphical Models

Maximum likelihood not always straightforward in general
graphs or graphs with hidden nodes.

Need to be able to compute with both prior and posterior.

Let x* = ((v*), (h™)")T, and P(x|0) = 7 exp(3_; ¢i(xc;6:))
Using trick from previous slide.

% Zﬂ:log;P(xﬂW) = [;;P(XG 10,v )69 01693 |9=)] 869 log Z(6).

But Z(8) is also a log sum as on previous slide, so we can rewrite
Pockener




Mixture Models

m A single Gaussian might be a poor fit

m Need mixture models for a multimodal density i



Mixture Models

Let z be a 1 of k indicator variable with

2.izj = 1.

P(zj = 1) = 1; is the probability of a given
data point being created by component j
(mixing proportion).

O<m<1Vjand);m = 1.

Pk(x|0k) IS @ mixing component

P(x|0©) Zp(z_,, = 1)P(x|z; =1,0;) = »  m;Pp(x|0k)
J



Maximizing Likelihood

J=1

N N,
= Z log Z 7; exp log P(x"[6,)

Can use the same method as before. But now partion function
Z(0) =1, and so the second term falls out.

OP(D|6) niony 0log p(x"|2")
00, 22 PG 00,

n zn

where P(z" = j|x) = S p(x[0)
' J

are called the responsibilities, i.e. the probability of each component
having generated a particular data point.



Iterating

It turns out iteratively computing
the responsibilities
The best parameters for fixed responsibilities

Is guaranteed to converge to a (local)
maximum.

Expectation Maximization (EM) Algorithm.
More next lecture.



Introduction to Learning

Learning exponential family models
and Bayesian Set example.

Approximate Learning and Maximum
Posterior/Likelihood

More Approximate Methods
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