Probabilistic Modelling and Reasoning
Inference with Gaussian Random Variables

Division of Informatics, University of Edinburgh

Instructor: Dr Chris Williams

October 2001

We have two variables X and Y. Imagine the X models the position of an object in the
world (in one dimension) and Y is an observation, say in a camera, of the position of the object
in the camera. A camera calibration procedure tells us the relationship between X and Y; in
our case we assume

$$Y = 2X + 8 + N_y$$

where N_y is some Gaussian measurement noise with zero mean and variance 1. Thus our model
for $P(y|x)$ is

$$P(y|x) = \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{1}{2}(y - 2x - 8)^2 \right\}. $$

Also we assume that $x \sim N(0, 1/\alpha)$ so that

$$P(x) = \sqrt{\frac{\alpha}{2\pi}} \exp\left\{-\frac{\alpha x^2}{2}\right\}. $$

Given this, we want to infer the distribution of X given that $Y = y$. To do this we compute
the mean and covariance of $(X,Y)^T$, and then condition on $Y = y$. The mean vector is easily
calculated as

$$\mu = \left(\begin{array}{c} \mu_x \\ \mu_y \end{array} \right) = \left(\begin{array}{c} 0 \\ 8 \end{array} \right). $$

For the covariance matrix, we have that $\text{var}(X) = 1/\alpha$. For $\text{var}(Y)$ we find

$$\text{var}(Y) = E[(Y - \mu_y)^2] = E[(2X + N_y)^2] = \frac{4}{\alpha} + 1, $$

and for $\text{covar}(XY)$ we find

$$\text{covar}(XY) = E[(X - \mu_x)(Y - \mu_y)] = E[X(2X + N_y)] = \frac{2}{\alpha} $$

and thus

$$\Sigma = \begin{pmatrix} 1/\alpha & 2/\alpha \\ 2/\alpha & 4/\alpha + 1 \end{pmatrix}. $$
Given a vector of random variables split into two parts X_1 and X_2 with

$$
\mu = \begin{pmatrix}
\mu_1 \\
\mu_2
\end{pmatrix}
$$

and

$$
\Sigma = \begin{pmatrix}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{pmatrix}
$$

the general expression for obtaining the conditional distribution of X_1 given X_2, is

$$
\mu^c_{1|2} = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2),
$$

$$
\Sigma^c_{1|2} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}.
$$

Applying this to the case above, we obtain

$$
\mu_{x|y} = 0 + \frac{2}{\alpha} \cdot \frac{\alpha}{4 + \alpha}(y - 8) = \frac{2}{4 + \alpha}(y - 8)
$$

and

$$
\text{var}(x|y) = \frac{1}{\alpha} - \frac{2}{\alpha} \cdot \frac{\alpha}{4 + \alpha} \cdot \frac{2}{\alpha} = \frac{1}{4 + \alpha}.
$$

The obvious estimator of X is $(y - 8)/2$, which is obtained from inverting the dependence between y and x on the assumption that the noise is zero. We see that this is obtained in the limit $\alpha \to 0$, which corresponds to an improper prior on X with infinite variance. For non-zero α, the effect is to “shrink” $\mu_{x|y}$ towards zero, which corresponds to the information in the prior on X that zero is its most likely value. Note that if $\alpha \to \infty$, which corresponds to being certain at the outset that $X = 0$, then this information overwhelms the information coming from the observation, and in this limit $\mu_{x|y} = 0$. Notice also that the posterior variance $1/(4 + \alpha)$ is smaller than the prior variance $1/\alpha$.