Probabilistic Modelling and Reasoning Inference with Gaussian Random Variables

Division of Informatics, University of Edinburgh

Instructor: Dr Chris Williams

October 2001

We have two variables X and Y. Imagine the X models the position of an object in the world (in one dimension) and Y is an observation, say in a camera, of the position of the object in the camera. A camera calibration procedure tells us the relationship between X and Y; in our case we assume

$$Y = 2X + 8 + N_{y}$$

where N_y is some Gaussian measurement noise with zero mean and variance 1. Thus our model for P(y|x) is

$$P(y|x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}(y - 2x - 8)^2\}.$$

Also we assume that $x \sim N(0, 1/\alpha)$ so that

$$P(x) = \sqrt{\frac{\alpha}{2\pi}} \exp{-\frac{\alpha x^2}{2}}.$$

Given this, we want to infer the distribution of X given that Y = y. To do this we compute the mean and covariance of $(X,Y)^T$, and then condition on Y = y. The mean vector is easily calculated as

$$\mu = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix} = \begin{pmatrix} 0 \\ 8 \end{pmatrix}.$$

For the covariance matrix, we have that $var(X) = 1/\alpha$. For var(Y) we find

$$var(Y) = E[(Y - \mu_y)^2] = E[(2X + N_y)^2] = \frac{4}{\alpha} + 1,$$

and for covar(XY) we find

$$covarXY = E[(X - \mu_x)(Y - \mu_y)] = E[X(2X + N_y)] = \frac{2}{\alpha}$$

and thus

$$\Sigma = \begin{pmatrix} 1/\alpha & 2/\alpha \\ 2/\alpha & 4/\alpha + 1 \end{pmatrix}.$$

Given a vector of random variables split into two parts \mathbf{X}_1 and \mathbf{X}_2 with

$$oldsymbol{\mu} = \left(egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array}
ight)$$

and

$$\Sigma = \left(\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array}\right)$$

the general expression for obtaining the conditional distribution of X_1 given X_2 , is

$$\mu_{1|2}^c = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_2 - \mu_2),$$

$$\Sigma_{1|2}^c = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}.$$

Applying this to the case above, we obtain

$$\mu_{x|y} = 0 + \frac{2}{\alpha} \cdot \frac{\alpha}{4+\alpha} (y-8) = \frac{2}{4+\alpha} (y-8)$$

and

$$\operatorname{var}(x|y) = \frac{1}{\alpha} - \frac{2}{\alpha} \cdot \frac{\alpha}{4+\alpha} \cdot \frac{2}{\alpha} = \frac{1}{4+\alpha}.$$

The obvious estimator of X is (y-8)/2, which is obtained from inverting the dependence between y and x on the assumption that the noise is zero. We see that this is obtained in the limit $\alpha \to 0$, which corresponds to an improper prior on X with infinite variance. For non-zero α , the effect is to "shrink" $\mu_{x|y}$ towards zero, which corresponds to the information in the prior on X that zero is its most likely value. Note that if $\alpha \to \infty$, which corresponds to being certain at the outset that X=0, then this information overwhelms the information coming from the observation, and in this limit $\mu_{x|y}=0$. Notice also that the posterior variance $1/(4+\alpha)$ is smaller than the prior variance $1/\alpha$.