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One common form of real-world data is that of time series, where we observe one or more
variables at a number of different times. Examples include measurements of temperature at
one or more locations, the prices of stocks on the stock market, measurements from an elec-
trocardiogram of a patient’s heart beats, etc. We need appropriate models for this kind of
data.

This note provides a short introduction to AR, MA and ARMA models for time series data
(see below for definitions). Chatfield (1989) and Diggle (1990) are useful introductory textbooks
in this area; Brockwell and Davis (1991) is a more advanced text.

A stochastic process can be described as “a statistical phenomenon that evolves in time
according to probabilistic laws” (Chatfield, 1989, p. 27). Mathematically a stochastic process is
a family of random variables X(t), where t runs over an index set, which for time series can be
taken either as the real line, or to run over the integers (for a discrete-time process). We can
think of generating an infinite set of times series (an ensemble) from a stochastic process, and
that the observed time series is a possible realization of the stochastic process.

We define the mean function µ(t) = E[X(t)], and the autocovariance function γ(t, s) =
E[(X(t) − µ(t))(X(s) − µ(s))] of the stochastic process. A time series is said to be strictly
stationary if the joint distribution of X(t1), . . . , X(tn) is the same as the joint distribution of
X(t1 + τ), . . . , X(tn + τ) for all t1, . . . , tn, τ . A time series is said to be weakly stationary if its
mean is constant and its autocovariance function depends only on the lag, i.e.

E[X(t)] = µ ∀ t,

Cov[X(t)X(t + τ)] = γ(τ).

A special kind of stochastic process is a Gaussian process, which is a family of random variables,
any finite number of which have a joint Gaussian distribution. Below we will consider stationary
Gaussian processes, which are one of the most widely used time series models.

1 AR, MA and ARMA models

The three kinds of process you need to know about are called autoregressive (AR) models,
moving average (MA) models, and autoregressive/moving average (ARMA) models; we discuss
these in the following sections.
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Figure 1: Simulations of an AR(1) process for (a) α = 0.5 and (b) α = −0.5.

1.1 Autoregressive Models

We start with the simple case known as an AR(1) model, with

xt = αxt−1 + wt, (1)

where wt ∼ N(0, σ2) is a Gaussian random variable with mean zero and variance σ2. The w’s
at different times are assumed independent, i.e. they are a white noise process. By repeated
substitution we obtain

xt = wt + αwt−1 + α2wt−2 + . . . (2)

which shows that E[X(t)] = 0, and if |α| < 1 the process is stationary with variance

Var[X(t)] = (1 + α2 + α4 + . . .)σ2 =
σ2

1− α2
. (3)

More generally, this argument shows that

γ(s) = Cov[X(t)X(t− s)] = αsVar[X(t− s)] =
αsσ2

1− α2
. (4)

Note that γ(s) = αsγ(0) for the AR(1) process. Samples from an AR(1) process are shown in
Figure 1 for two different values of α. As expected the trace for α = −0.5 is more oscillatory
than that for α = 0.5.

We can now generalize from an AR(1) process to the AR(p) process

xt =
p∑

i=1

αixt−i + wt. (5)

Notice how xt is obtained by a (linear) regression from xt−1, . . . , xt−p, hence the name autore-
gressive. Samples from two AR(2) processes with different parameters are shown in Fig. 2.

We introduce the backward shift operator B, so that Bxt = xt−1, B2xt = xt−2 etc. Then
the AR(p) model can be written as

φ(B)xt = wt, with φ(B) = (1− α1B . . .− αpB
p). (6)

The condition for stationarity is that all the roots of φ(B) lie outside the unit circle. For an
AR(1) process we have that roots of φ(B) are φ(B) = 1 − αB = 0 or B = α−1. The condition

2



(a) α1 = 0.2, α2 = 0.1 (b) α1 = 1.0, α2 = −0.5

Figure 2: Simulations of an AR(2) process.

that the roots of φ(B) lie outside the unit circle implies that |α−1| > 1, or equivalently that
|α| < 1, as discussed above.

Yule-Walker Equations: By multiplying through eq. 5 by xt−s, assuming stationarity,
and taking expectations we obtain

γs =
p∑

i=1

αiγs−i s = 1, 2, . . . (7)

Using p of these relations we have a system of linear equations which can be used to determine
the covariances (γ’s) from the α’s. For the AR(1) process we obtain γs = αsγ0 again.

1.2 Moving Average Models

Given a white noise process w, we obtain a moving average (MA) process by linear filtering, i.e.

xt =
q∑

j=0

βjwt−j = θ(B)wt,

with scaling chosen so that β0 = 1 and θ(B) = 1 +
∑q

j=1 βjB
j . We have that E[X(t)] = 0 (as

all w’s have zero mean), and that

Var[X(t)] = (1 + β2
1 + . . . + β2

q )σ2,

Cov[X(t)X(t− s)] = E[
q∑

j=0

βjwt−j ,

q∑
i=0

βiwt−s−i]

=
{

σ2
∑q−s

j=0 βj+sβj for s = 0, 1, . . . , q

0 for s > q.

Notice that covariance “cuts off” for s > q, in contrast to AR processes which can have infinite
range correlations.

An AR(p) process can be written as a MA(∞) process

φ(B)xt = wt

xt = (1− α1B . . . − αpB
p)−1wt

= (1 + β1B + β2B
2 . . .)wt.

Similarly a MA(q) process can be written as a AR(∞) process.
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1.3 ARMA models

The ARMA(p,q) process is the natural generalization of the AR and MA processes,

xt =
p∑

i=1

αixt−i +
q∑

j=0

βjwt−j

φ(B)xt = θ(B)wt

The utility of the ARMA process is its parsimony; an ARMA(p,q) process could be written
as an infinite order AR or MA process, but the ARMA process gives a compact description.

1.4 The Fourier View

AR/MA/ARMA models are linear time-invariant systems, and thus sinusoids are their eigen-
functions. We can think about the corresponding process in the Fourier domain, where the
power spectrum S(k) is (roughly speaking) the amount of power allocated on average to the
eigenfunction e2πikt. For ARMA processes the power spectrum S(k) can be calculated from the
{α}, {β} coefficients. The Fourier view is a useful way to understand some properties of ARMA
processes, but we will not pursue it further here. If you want to know more, see e.g. Chatfield
(1989, chapter 7) or Diggle (1990, chapter 4).

1.5 Vector AR processes

It is not necessary to restrict xt to be a scalar quantity. For xt being a vector we write

xt =
p∑

i=1

Aixt−i + Gwt (8)

where the Ais and G are square matrices, and wt is a white noise vector of the same dimension
as xt. In general we can consider modelling multivariate (as opposed to univariate) time series,
for example we might model the location of a bat in 3D space.

We can also write a scalar AR(p) process as a vector AR(1) process. For example an AR(2)
process can be written as(

xt

xt−1

)
=

(
α1 α2

1 0

) (
xt−1

xt−2

)
+

(
1 0
0 0

) (
wt

wt−1

)
(9)

In general an AR(p) process can be written as a vector AR(1) process with a p-dimensional
state vector; this is similar to the way one can create a system of first order ordinary differential
equations (ODEs) from a single higher-order ODE.

2 Parameter Estimation for ARMA models

The section above considers the properties of AR, MA and ARMA stochastic processes driven
by Gaussian white noise. We now consider the statistical question of how to estimate the
parameters from data. This breaks down into two parts: (i) parameter estimation for a given
ARMA(p, q) model, and (ii) model order selection to choose p and q.

First of all, if the original data does not have zero mean, we estimate that as µ̂ =
∑n

i=1 xi/n
and subtract it off to get a zero-mean series.
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For AR(p) models we recognize that eq. 5 is just a linear regression between the inputs
xt−1, . . . , xt−p and the target xt. Thus the coefficients α and noise level σ2 can readily estimated.
This viewpoint also shows how more general AR models that are a nonlinear function of the
inputs can be fitted in a similar fashion, using nonlinear regression.

For other ARMA models driven by Gaussian white noise, it is probably easiest to recognize
that the likelihood L(x;α,β) is a multivariate Gaussian, where x = (x(t1), . . . , x(tn))T . The
likelihood can be optimized wrt the parameters with numerical optimization techniques, e.g. by
gradient ascent.

We now turn to model order selection. An observation for pure MA(q) processes is that
there should be a cut-off in the autocorrelation function for lags greater than q, so the empirical
autocorrelation would drop to near zero. If the data comes from an AR(p) model, then we would
expect that if we fit an AR(p + 1) model, then the last (p + 1th) coefficient should be near zero.
For general ARMA models we simply point out the usual problem of model selection holds,
i.e. that larger models having more free parameters are likely to fit the data better (including
perhaps overfitting to the noise on the data). This issue is discussed elsewhere in the PMR
course.
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